Log in

MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

NF-E2-related factor 2 (Nrf2) is an important transcription factor involved in antioxidant response. Nrf2 binds antioxidant response elements (ARE) within promoters of genes encoding detoxification enzymes (e.g., NAD (P) H-quinone oxidoreductase 1 (NQO1)) leading to their transcriptional activation. Nrf2 function is regulated post-translationally by its negative regulator Kelch-like ECH-associated protein 1 (Keap1) that binds Nrf2 and induces cytoplasmic Nrf2 degradation. Our present studies provide new evidence that Nrf2 expression can be regulated by a Keap1-independent mechanism. Here, we utilized breast epithelial cells to explore the impact of microRNA (miRNA) on Nrf2 expression. We found that Nrf2 mRNA levels are reversibly correlated with miR-28 expression and that ectopic expression of miR-28 alone reduces Nrf2 mRNA and protein levels. We further investigated the molecular mechanisms by which miR-28 inhibits Nrf2 mRNA expression. Initially, the ability of miR-28 to regulate the 3′ untranslated region (3′UTR) of Nrf2 mRNA was evaluated via luciferase reporter assay. We observed that miR-28 reduces wild-type Nrf2 3′UTR luciferase reporter activity and this repression is eliminated upon mutation of the miR-28 targeting seed sequence within the Nrf2 3′UTR. Moreover, over-expression of miR-28 decreased endogenous Nrf2 mRNA and protein expression. We also explored the impact of miR-28 on Keap1-Nrf2 interactions and found that miR-28 over-expression does not alter Keap1 protein levels and has no effect on the interaction of Keap1 and Nrf2. Our findings, that miR-28 targets the 3′UTR of Nrf2 mRNA and decreases Nrf2 expression, suggest that this miRNA is involved in the regulation of Nrf2 expression in breast epithelial cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Yu S, Kong A (2007) Targeting carcinogen metabolism by dietary cancer preventive compounds. Curr Cancer Drug Targets 7:416–424

    Article  PubMed  CAS  Google Scholar 

  2. Fields WR, Morrow CS, Doehmer J et al (1999) Expression of stably transfected murine glutathione S-transferase A3–3 protects against nucleic acid alkylation and cytotoxicity by aflatoxin B1 in hamster V79 cells expressing rat cytochrome P450–2B1. Carcinogenesis 20:1121–1125

    Article  PubMed  CAS  Google Scholar 

  3. Henderson CJ, Smith AG, Ure J et al (1998) Increased skin tumorigenesis in mice lacking pi class glutathione S-transferases. Proc Natl Acad Sci USA 95:5275–5280

    Article  PubMed  CAS  Google Scholar 

  4. Ramos-Gomez M, Kwak MK, Dolan PM et al (2001) Sensitivity to carcinogenesis is increased and chemoprotective efficacy of enzyme inducers is lost in nrf2 transcription factor-deficient mice. Proc Natl Acad Sci USA 98:3410–3415

    Article  PubMed  CAS  Google Scholar 

  5. Ramos-Gomez M, Dolan P, Itoh K et al (2003) Interactive effects of nrf2 genotype and oltipraz on benzo[a]pyrene-DNA adducts and tumor yield in mice. Carcinogenesis 24:461–467

    Article  PubMed  CAS  Google Scholar 

  6. McMahon M, Itoh K, Yamamoto M et al (2001) The Cap’n’Collar basic leucine zipper transcription factor Nrf2 (NF-E2 p45-related factor 2) controls both constitutive and inducible expression of intestinal detoxification and glutathione biosynthetic enzymes. Cancer Res 61:3299–3307

    PubMed  CAS  Google Scholar 

  7. Harvey CJ, Thimmulappa RK, Singh A et al (2009) Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic Biol Med 46:443–453

    Article  PubMed  CAS  Google Scholar 

  8. Barve A, Khor T, Nair S et al (2009) Gamma-tocopherol-enriched mixed tocopherol diet inhibits prostate carcinogenesis in TRAMP mice. Int J Cancer 124:1693–1699

    Article  PubMed  CAS  Google Scholar 

  9. Acharya A, Das I, Chandhok D et al (2010) Redox regulation in cancer: a double-edged sword with therapeutic potential. Oxid Med Cell Longev 3(1):23–34

    Article  PubMed  Google Scholar 

  10. Hsieh T, Elangovan S, Wu J (2010) Differential suppression of proliferation in MCF-7 and MDA-MB-231 breast cancer cells exposed to alpha-, gamma- and delta-tocotrienols is accompanied by altered expression of oxidative stress modulatory enzymes. Anticancer Res 30:4169–4176

    PubMed  CAS  Google Scholar 

  11. Yao Y, Brodie AMH, Davidson N et al (2010) Inhibition of estrogen signaling activates the NRF2 pathway in breast cancer. Breast Cancer Res Treat 124:585–591

    Article  PubMed  CAS  Google Scholar 

  12. Singh A, Misra V, Thimmulappa R et al (2006) Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Medicine 3:e420

    Article  PubMed  Google Scholar 

  13. Ohta T, Iijima K, Miyamoto M et al (2008) Loss of Keap1 function activates Nrf2 and provides advantages for lung cancer cell growth. Cancer Res 68:1303–1309

    Article  PubMed  CAS  Google Scholar 

  14. Dinkova-Kostova A, Holtzclaw WD, Cole R et al (2002) Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci USA 99:11908–11913

    Article  PubMed  CAS  Google Scholar 

  15. Wakabayashi N, Dinkova-Kostova A, Holtzclaw WD et al (2004) Protection against electrophile and oxidant stress by induction of the phase 2 response: fate of cysteines of the Keap1 sensor modified by inducers. Proc Natl Acad Sci USA 101:2040–2045

    Article  PubMed  CAS  Google Scholar 

  16. Kobayashi M, Yamamoto M (2006) Nrf2-Keap1 regulation of cellular defense mechanisms against electrophiles and reactive oxygen species. Adv Enzyme Regul 46:113–140

    Article  PubMed  CAS  Google Scholar 

  17. Niture SK, Kaspar JW, Shen J, Jaiswal AK (2010) Nrf2 signaling and cell survival. Toxicol Appl Pharmacol 244(1):37–42

    Article  PubMed  CAS  Google Scholar 

  18. Kaspar J, Niture S, Jaiswal A (2009) Nrf2:INrf2 (Keap1) signaling in oxidative stress. Free Radic Biol Med 47:1304–1309

    Article  PubMed  CAS  Google Scholar 

  19. Miao W, Hu L, Scrivens PJ et al (2005) Transcriptional regulation of NF-E2 p45-related factor (NRF2) expression by the aryl hydrocarbon receptor-xenobiotic response element signaling pathway: direct cross-talk between phase I and II drug-metabolizing enzymes. J Biol Chem 280:20340–20348

    Article  PubMed  CAS  Google Scholar 

  20. Kwak M, Itoh K, Yamamoto M, Kensler T (2002) Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol Cell Biol 22:2883–2892

    Article  PubMed  CAS  Google Scholar 

  21. Wang X, Zhang D (2009) Ectodermal-neural cortex 1 down-regulates Nrf2 at the translational level. PLoS ONE 4:e5492

    Article  PubMed  Google Scholar 

  22. Yu S, Khor T, Cheung K et al (2010) Nrf2 expression is regulated by epigenetic mechanisms in prostate cancer of TRAMP mice. PLoS ONE 5:e8579

    Article  PubMed  Google Scholar 

  23. Filipowicz W, Bhattacharyya S, Sonenberg N (2008) Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet 9:102–114

    Article  PubMed  CAS  Google Scholar 

  24. Winter J, Jung S, Keller S et al (2009) Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol 11:228–234

    Article  PubMed  CAS  Google Scholar 

  25. Zimmerman A, Wu S (2011) MicroRNAs, cancer and cancer stem cells. Cancer Lett 300:10–19

    Article  PubMed  CAS  Google Scholar 

  26. Voorhoeve PM, Agami R (2007) Classifying microRNAs in cancer: the good, the bad and the ugly. Biochim Biophys Acta 1775:274–282

    PubMed  CAS  Google Scholar 

  27. Sangokoya C, Telen M, Chi J (2010) microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease. Blood 116:4338–4348

    Article  PubMed  CAS  Google Scholar 

  28. Rosenfeld N, Aharonov R, Meiri E et al (2008) MicroRNAs accurately identify cancer tissue origin. Nat Biotechnol 26:462–469

    Article  PubMed  CAS  Google Scholar 

  29. Corcoran C, Friel A, Duffy M et al (2011) Intracellular and extracellular microRNAs in breast cancer. Clin Chem 57:18–32

    Article  PubMed  CAS  Google Scholar 

  30. Farazi T, Spitzer J, Morozov P et al (2011) miRNAs in human cancer. J Pathol 223:102–115

    Article  PubMed  CAS  Google Scholar 

  31. Gottardo F, Liu C, Ferracin M et al (2007) Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 25:387–392

    Article  PubMed  CAS  Google Scholar 

  32. Malzkorn B, Wolter M, Liesenberg F et al (2010) Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol 20:539–550

    Article  PubMed  CAS  Google Scholar 

  33. Girardot M, Pecquet C, Boukour S et al (2010) miR-28 is a thrombopoietin receptor targeting microRNA detected in a fraction of myeloproliferative neoplasm patient platelets. Blood 116:437–445

    Article  PubMed  CAS  Google Scholar 

  34. Fan W, Tang Z, Chen D et al (2010) Keap1 facilitates p62-mediated ubiquitin aggregate clearance via autophagy. Autophagy 6:614–621

    Article  CAS  Google Scholar 

  35. Furukawa M, **ong Y (2005) BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Mol Cell Biol 25:162–171

    Article  PubMed  CAS  Google Scholar 

  36. Zhou H, Mazan-Mamczarz K, Martindale J et al (2010) Post-transcriptional regulation of androgen receptor mRNA by an ErbB3 binding protein 1 in prostate cancer. Nucleic Acids Res 38:3619–3631

    Article  PubMed  CAS  Google Scholar 

  37. Agoston A, Argani P, Yegnasubramanian S et al (2005) Increased protein stability causes DNA methyltransferase 1 dysregulation in breast cancer. J Biol Chem 280:18302–18310

    Article  PubMed  CAS  Google Scholar 

  38. Kensler T, Wakabayashi N (2010) Nrf2: friend or foe for chemoprevention? Carcinogenesis 31:90–99

    Article  PubMed  CAS  Google Scholar 

  39. Xu W, Li J, Fan L et al (2009) Expressions of bcl-6, lpp and miR-28 genes in diffuse large B cell lymphoma cell lines. Zhong Guo Shi Yan Xue Ye Xue Za Zhi 17:83–87

    CAS  Google Scholar 

  40. Li L, Zhang Z, Liu Y et al (2010) DNA microarrays-based microRNA expression profiles derived from formalin-fixed paraffin-embedded tissue blocks of squammous cell carcinoma of larynx. Zhong Hua Bing Li Xue Za Zhi 39:391–395

    Google Scholar 

  41. Eulalio A, Huntzinger E, Izaurralde E (2008) Getting to the root of miRNA-mediated gene silencing. Cell 132:9–14

    Article  PubMed  CAS  Google Scholar 

  42. Nottrott S, Simard M, Richter J (2006) Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13:1108–1114

    Article  PubMed  CAS  Google Scholar 

  43. Klaunig J, Kamendulis L, Hocevar B (2010) Oxidative stress and oxidative damage in carcinogenesis. Toxicol Pathol 38:96–109

    Article  PubMed  CAS  Google Scholar 

  44. Kwak M, Kensler T (2010) Targeting NRF2 signaling for cancer chemoprevention. Toxicol Appl Pharmacol 244:66–76

    Article  PubMed  CAS  Google Scholar 

  45. Rachakonda G, Sekhar KR, Jowhar D et al (2010) Increased cell migration and plasticity in Nrf2-deficient cancer cell lines. Oncogene 29:3703–3714

    Article  PubMed  CAS  Google Scholar 

  46. Havens C, Ho A, Yoshioka N et al (2006) Regulation of late G1/S phase transition and APC Cdh1 by reactive oxygen species. Mol Cell Biol 26:4701–4711

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from Flight Attendants Medical Research Institute (FAMRI YCSA072084 to QZ), and Maryland Stem Cell Research Fund (2010-MSCRFE-0179-00 to QZ).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qun Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, M., Yao, Y., Eades, G. et al. MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism. Breast Cancer Res Treat 129, 983–991 (2011). https://doi.org/10.1007/s10549-011-1604-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-011-1604-1

Keywords

Navigation