Log in

Soluble factors derived from tumor mammary cell lines induce a stromal mammary adipose reversion in human and mice adipose cells. Possible role of TGF-β1 and TNF-α

  • Letter to the editor
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

In carcinomas such as those of breast, pancreas, stomach, and colon, cancer cells support the expansion of molecular and cellular stroma in a phenomenon termed desmoplasia, which is characterized by a strong fibrotic response. In the case of breast tissue, in which stroma is mainly a fatty tissue, this response presumably occurs at the expense of the adipose cells, the most abundant stromal phenotype, generating a tumoral fibrous structure rich in fibroblast-like cells. In this study, we aimed to determine the cellular mechanisms by which factors present in the media conditioned by MDA-MB-231 and MCF-7 human breast cancer cell lines induce a reversion of adipose cells to a fibroblastic phenotype. We demonstrated that soluble factors generated by these cell lines stimulated the reversion of mammary adipose phenotype evaluated as intracellular lipid content and expression of C/EBPα and PPARγ. We also demonstrated that exogenous TGF-β1 and TNF-α exerts a similar function. The participation of both growth factors, components of media conditioned by tumoral mammary cells, on the expression and nuclear translocation of C/EBPα and PPARγ was tested in 3T3-L1 cells by interfering with the inhibitory effects of media with agents that block the TGF-β1 and TNF-α activity. These results allow us to postulate that TGF-β1 and TNF-α present in this media are in part responsible for this phenotypic reversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:1–11

    Article  Google Scholar 

  2. Elenbaas B, Weinberg RA (2001) Heterotypic signaling between epithelial tumour cells and fibroblasts in carcinoma formation. Exp Cell Res 264:169–184

    Article  CAS  PubMed  Google Scholar 

  3. Hasebe T, Tsuda H, Hirohashi S, Shimosato Y, Tsubono Y, Yamamoto H, Mukai K (1998) Fibrotic focus in infiltrating ductal carcinoma of the breast: a significant histopathological prognostic parameter for predicting the long-term survival of the patients. Breast Cancer Res Treat 49:195–208

    Article  CAS  PubMed  Google Scholar 

  4. Shao ZM, Nguyen M, Barsky SH (2000) Human breast carcinoma desmoplasia is PDGF initiated. Oncogene 19:4337–4345

    Article  CAS  PubMed  Google Scholar 

  5. Vacek PM, Geller BM (2004) A prospective study of breast cancer risk using routine mammographic breast density measurements. Cancer Epidemiol Biomark Prev 13(5):715–722

    Google Scholar 

  6. Meng L, Zhou J, Sasano H, Suzuki T, Zeitoun KM, Bulun SE (2001) Tumor necrosis factor alpha and interleukin 11 secreted by malignant breast epithelial cells inhibit adipocyte differentiation by selectively down-regulating CAAT/enhancer binding protein alpha and peroxisome proliferator-activated receptor gamma: mechanism of desmoplastic reaction. Cancer Res 61:2250–2255

    CAS  PubMed  Google Scholar 

  7. Dalal BI, Keown PA, Greenberg AH (1993) Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am J Pathol 143:381–389

    CAS  PubMed  Google Scholar 

  8. Wiseman BS, Werb Z (2002) Stromal effects on mammary gland development and breast cancer. Science 296:1046–1049

    Article  CAS  PubMed  Google Scholar 

  9. Gregoire FM, Smas CM, Sul HS (1998) Understanding adipocyte differentiation. Physiol Rev 78:783–809

    CAS  PubMed  Google Scholar 

  10. Tamori Y, Masugi J, Nishino N, Kasuga M (2002) Role of peroxisome proliferator-activated receptor-γ in maintenance of the characteristics of mature 3T3-L1 adipocytes. Diabetes 51:2045–2055

    Article  CAS  PubMed  Google Scholar 

  11. Mikkel MB, Porse B (2006) C/EBPα: a tumor suppressor in multiple tissues? Biochim Biophys Acta 1766:88–103

    Google Scholar 

  12. Ezquerro IJ, Lasarte JJ, Dotor J, Castilla-Cortázar I, Bustos M, Peñuelas I, Blanco G, Rodríguez C, Lechuga Mdel C, Greenwel P, Rojkind M, Prieto J, Borrás-Cuesta F (2003) A synthetic peptide from transforming growth factor beta type III receptor inhibits liver fibrogenesis in rats with carbon tetrachloride liver injury. Cytokine 22(1–2):12–20. Erratum in: Cytokine 2006, 21:33(2):119

    Google Scholar 

  13. Manabe Y, Toda S, Miyazaki K, Sugihara H (2003) Mature adipocytes, but not preadipocytes, promote the growth of breast carcinoma cells in collagen gel matrix culture through cancer-stromal cell interactions. J Pathol 201:221–228

    Article  PubMed  Google Scholar 

  14. Birkedal-Hansen H (1987) Catabolism and turnover of collagens: collagenases. Methods Enzymol 144:140–171

    Article  CAS  PubMed  Google Scholar 

  15. Kang X, **e Y, Kniss DA (2005) Adipose tissue model using three-dimensional cultivation of preadipocytes seeded onto fibrous polymer scaffolds. Tissue Eng 11(3–4):458–468

    Article  CAS  PubMed  Google Scholar 

  16. Budwit-Novotny DA, McCarty KS, Cox EB, Soper JT, Mutch DG, Creasman WT, Flowers JL, McCarty KS Jr (1986) Immunohistochemical analyses of estrogen receptor in endometrial adenocarcinoma using a monoclonal antibody. Cancer Res 46(10):5419–5425

    CAS  PubMed  Google Scholar 

  17. Lessey BA, Castelbaum AJ, Wolf L, Greene W, Paulson M, Meyer WR, Fritz MA (2000) Use of integrins to date the endometrium. Fertil Steril 73:779–787

    Article  CAS  PubMed  Google Scholar 

  18. Gregory CW, Wilson EM, Apparao KB, Lininger RA, Meyer WR, Kowalik A, Fritz MA, Lessey BA (2002) Steroid receptor coactivator expression throughout the menstrual cycle in normal and abnormal endometrium. J Clin Endocrinol Metab 87(6):2960–2966

    Article  CAS  PubMed  Google Scholar 

  19. Chen HC, Farese RV Jr (2002) Determination of adipocyte size by computer image analysis. J Lipid Res 43(6):986–989

    CAS  PubMed  Google Scholar 

  20. Choy L, Derynck R (2003) Transforming growth factor-beta inhibits adipocyte differentiation by Smad3 interacting with CCAAT/enhancer-binding protein (C/EBP) and repressing C/EBP transactivation function. J Biol Chem 278:9609–9619

    Article  CAS  PubMed  Google Scholar 

  21. Fajas L, Fruchart JC, Auwerx J (1998) Transcriptional control of adipogenesis. Curr Opin Cell Biol 10(2):165–173

    Article  CAS  PubMed  Google Scholar 

  22. Mareel M, Leroy A (2003) Clinical, cellular and molecular aspects of cancer invasion. Physiol Rev 83:337–376

    CAS  PubMed  Google Scholar 

  23. Liotta LA, Kohn EC (2001) The microenvironment of the tumour-host interface. Nature 411:375–379

    Article  CAS  PubMed  Google Scholar 

  24. Kalluri R, Zaisberg M (2006) Fibroblast in cancer. Nat Rev Cancer 6:392–401

    Article  CAS  PubMed  Google Scholar 

  25. Löhr M, Schmidt C, Ringel J, Kluth M, Müller P, Nizze H, Jesnowski R (2001) Transforming growth factor-β1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Res 61:550–555

    PubMed  Google Scholar 

  26. Clouthier DE, Comerford SA, Hammer RE (1997) Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGFβ1 transgenic mice. J Clin Invest 100:2697–2713

    Article  CAS  PubMed  Google Scholar 

  27. Hong KM, Belperio JA, Keane MP, Burdick MD, Strieter RM (2007) Differentiation of human circulating fibrocytes as mediated by transforming growth factor-β and peroxisome proliferator-activated receptor-γ. J Biol Chem 282:22910–22920

    Article  CAS  PubMed  Google Scholar 

  28. Kamei Y, Ohizumi H, Fujitani Y, Nemoto T, Tanaka T, Takahashi N, Kawada T, Miyoshi M, Ezaki O, Kakizuka A (2003) PPARγ coactivator 1β/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci USA 100:12378–12383

    Article  CAS  PubMed  Google Scholar 

  29. Butcher DT, Alliston T, Weaver VM (2009) A tense situation: forcing tumour progression. Nat Rev Cancer 9:108–122

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant (1080196 to JM) from the Fondo Nacional de Ciencia y Tecnología (FONDECYT) of Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero, J., Tobar, N., Cáceres, M. et al. Soluble factors derived from tumor mammary cell lines induce a stromal mammary adipose reversion in human and mice adipose cells. Possible role of TGF-β1 and TNF-α. Breast Cancer Res Treat 119, 497–508 (2010). https://doi.org/10.1007/s10549-009-0491-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-009-0491-1

Keywords

Navigation