Log in

Buoyancy and The Sensible Heat Flux Budget Within Dense Canopies

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In contrast to atmospheric surface-layer (ASL) turbulence, a linear relationship between turbulent heat fluxes (FT) and vertical gradients of mean air temperature within canopies is frustrated by numerous factors, including local variation in heat sources and sinks and large-scale eddy motion whose signature is often linked with the ejection-sweep cycle. Furthermore, how atmospheric stability modifies such a relationship remains poorly understood, especially in stable canopy flows. To date, no explicit model exists for relating FT to the mean air temperature gradient, buoyancy, and the statistical properties of the ejection-sweep cycle within the canopy volume. Using third-order cumulant expansion methods (CEM) and the heat flux budget equation, a “diagnostic” analytical relationship that links ejections and sweeps and the sensible heat flux for a wide range of atmospheric stability classes is derived. Closure model assumptions that relate scalar dissipation rates with sensible heat flux, and the validity of CEM in linking ejections and sweeps with the triple scalar-velocity correlations, were tested for a mixed hardwood forest in Lavarone, Italy. We showed that when the heat sources (ST) and FT have the same sign (i.e. the canopy is heating and sensible heat flux is positive), sweeps dominate the sensible heat flux. Conversely, if ST and FT are opposite in sign, standard gradient-diffusion closure model predict that ejections must dominate the sensible heat flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • J.C. Andre G. Moor Particlede P. Lacarrere G. Therry R. Vachat Particledu (1979) ArticleTitle‘The Clip** Approximation and Inhomogeneous Turbulence Simulations’ Turbulent Shear Flow I 307–318

    Google Scholar 

  • J.M. Chen T.A. Black (1992) ArticleTitle‘Defining Leaf-Area Index for Non-flat Leaves’ Plant Cell Environ. 15 IssueID4 421–429

    Google Scholar 

  • S. Corrsin (1974) ArticleTitle‘Limitations of Gradient Transport Models In Random Walks and in Turbulence’ Adv. Geophys. 18A 25–60

    Google Scholar 

  • O.T. Denmead E.F. Bradley (1985) ‘Flux-Gradient Relationship in a Forest Canopy’ B.A. Hutchinson B.B. Hicks (Eds) The Forest Atmosphere Interaction D. Reidel Publ. Co. Dordrecht 421–442

    Google Scholar 

  • I. Fer M.G. McPhee A Sirevaag (2004) ArticleTitle‘Conditional Statistics of the Reynolds Stress in the Under-Ice Boundary Layer’ Geophys. Res. Lett. 31 L15311–L15311 Occurrence Handle10.1029/2004GL020475

    Article  Google Scholar 

  • J.J. Finnigan (2000) ArticleTitle‘Turbulence in Plant Canopies’ Ann. Rev. Fluid Mech. 32 519–571 Occurrence Handle10.1146/annurev.fluid.32.1.519

    Article  Google Scholar 

  • J.J. Finnigan (1985) ‘Turbulent Transport in Plant Canopies’ B.A. Hutchinson B.B. Hocks (Eds) The Forest-Atmosphere Interactions D. Reidel Norwell, MA 443–480

    Google Scholar 

  • J.J. Finnigan (1979) ArticleTitle‘Turbulence in Waving Wheat. II. Structure of Momentum Transfer’ Boundary-Layer Meteorol 16 213–236

    Google Scholar 

  • W.G. Gao R.H. Shaw U.K.T. Paw (1989) ArticleTitle‘Observation of Organised Structure in Turbulent-Flow Within and Above a Forest Canopy’ Boundary-Layer Meteorol. 47 349–377 Occurrence Handle10.1007/BF00122339

    Article  Google Scholar 

  • J.C. Kaimal J.J. Finnigan (1994) Atmospheric Boundary Layer Flows: Their Structure and Measurements Oxford University Press New York 289

    Google Scholar 

  • Katul G.G., Cava D., Poggi D., Albertson J.D., Mahrt L. (2004). ‘Stationarity, Homogeneity, and Ergodicity in Canopy Turbulence’, Handbook of Micrometeorology, Chapter 8, Kluwer Academic Publishers, Dordrecht, pp. 84–102.

  • G.G. Katul R. Leuning J. Kim O.T. Denmead A. Miyata Y. Harazono (2001) ArticleTitle‘Estimating CO2 Source/Sink Distributions Within a Rice Canopy Using Higher-Order Closure Models’ Boundary-Layer Metereol. 98 103–125

    Google Scholar 

  • G.G. Katul J.D. Albertson (1999) ArticleTitle‘Modelling CO2 Sources, Sinks and Fluxes Within a Forest Canopy’ J. Geophys. Res. 104 6081–6091 Occurrence Handle10.1029/1998JD200114

    Article  Google Scholar 

  • G.G. Katul R. Oren D. Ellsworth C.I. Hsieh N. Phillips K. Lewin (1997a) ArticleTitle‘A Lagrangian Dispersion Model for Predicting CO2 Sources, Sinks, and Fluxes in a Uniform Loblolly Pine (Pinus taeda L.) Stand’ J. Geophys. Res. 102 9309–9321

    Google Scholar 

  • G.G. Katul C.I. Hsieh G. Kuhn D. Ellswort (1997b) ArticleTitle‘Turbulent Eddy Motion at the Forest-atmosphere Interface’ J. Geophys. Res. 102-D12 13409–13421

    Google Scholar 

  • G.G. Katul M.B. Parlange (1994) ArticleTitle‘On the Active Role of Temperature in Surface Layer Turbulence’ J. Atmos. Sci. 51 2181–2195 Occurrence Handle10.1175/1520-0469(1994)051<2181:OTAROT>2.0.CO;2

    Article  Google Scholar 

  • M.Y. Leclerc K.C. Beissner R.H. Shaw G. Denhartog H.H. Neumann (1991) ArticleTitle‘The Influence of Buoyancy on 3rd-order Turbulent Velocity Statistics Within a Deciduous Forest’ Boundary-Layer Meteorol. 55 109–123 Occurrence Handle10.1007/BF00119329

    Article  Google Scholar 

  • M.Y. Leclerc K.C. Beissner R.H. Shaw G. Denhartog H.H. Neumann (1990) ArticleTitle‘The Influence of Atmospheric Stability on the Budgets of the Reynolds Stress and Turbulent Kinetic-Energy Within and Above a Deciduous Forest’ J Appl Meteorol. 29 IssueID9 916–933 Occurrence Handle10.1175/1520-0450(1990)029<0916:TIOASO>2.0.CO;2

    Article  Google Scholar 

  • R. Leuning O.T. Denmead A. Miyata J. Kim (2000) ArticleTitle‘Source/sink Distributions of Heat, Water Vapour, Carbon Dioxide and Methane in a Rice Canopy Estimated Using Lagrangian Dispersion Analysis’ Agric. For. Meteorol. 104 233–249 Occurrence Handle10.1016/S0168-1923(00)00158-1

    Article  Google Scholar 

  • T. Maitani T. Seo (1985) ArticleTitle‘Estimates of Velocity–Pressure and Velocity–Pressure-Gradient Interactions in the Surface Layer Over Plant Canopies’ Boundary-Layer Meteorol. 33 51–60

    Google Scholar 

  • B. Marcolla A. Pitacco A. Cescatti (2003) ArticleTitle‘Canopy Architecture and Turbulence Structure in a Coniferous Forest’ Boundary-Layer Meteorol. 108 IssueID1 39–59 Occurrence Handle10.1023/A:1023027709805

    Article  Google Scholar 

  • W.J. Massman J.C. Weil (1999) ArticleTitle‘An Analytical One-dimensional Second-Order Closure Model of Turbulence Statistics and the Lagrangian Time Scale Within and Above Plant Canopies of Arbitrary Structure’ Boundary-Layer Meteorol. 91 IssueID1 81–107 Occurrence Handle10.1023/A:1001810204560

    Article  Google Scholar 

  • L. Mahrt (1998) ArticleTitle‘Stratified Atmospheric Boundary Layers and Breakdown of Models’ Theoret. Comput. Fluid Dyn. 11 263–279 Occurrence Handle10.1007/s001620050093

    Article  Google Scholar 

  • T. Meyers U.K.T. Paw (1987) ArticleTitle’Modelling the Plant Canopy Micrometeorology with Higher-order Closure Principles’ Agric. For. Meteorol. 41 143–163 Occurrence Handle10.1016/0168-1923(87)90075-X

    Article  Google Scholar 

  • Y. Nagano M. Tagawa (1995) ArticleTitle‘Coherent Motions and Heat Transfer in a Wall Turbulent Shear Flow’ J. Fluid Mech. 305 127–157

    Google Scholar 

  • H. Nakagawa I. Nezu (1977) ArticleTitle‘Prediction of the Contributions to the Reynolds Stress from Bursting Events in Open Channel Flows’ J. Fluid Mech. 80 99–128

    Google Scholar 

  • D. Poggi G.G. Katul J.D. Albertson (2004) ArticleTitle‘Momentum Transfer and Turbulent Kinetic Energy Budgets Within a Dense Model Canopy’ Boundary-Layer Meteorol. 111 IssueID3 589–614

    Google Scholar 

  • Poggi D., Albertson J., Katul G. (2005). ‘Scalar Dispersion Within a Model Canopy: Measurements and Lagrangian Models’. Adv. Water Res., in press.

  • M.R. Raupach (1989a) ArticleTitle‘Applying Lagrangian Fluid Mechanics to Infer Scalar Source Distributions from Concentration Profiles in Plant Canopies’ Agric. For. Meteorol. 47 85–108 Occurrence Handle10.1016/0168-1923(89)90089-0

    Article  Google Scholar 

  • M.R. Raupach (1989b) ArticleTitle’A Practical Lagrangian Method for Relating Scalar Concentrations to Source Distributions in Vegetation Canopies’ Quart. J. Roy. Meteorol. Soc. 487 609–632

    Google Scholar 

  • M.R. Raupach (1988) ‘Canopy Transport Processes’ W.L. Steffen O.T. Denmead (Eds) Flow and Transport in the Natural Environment Springer-Verlag New York 95–127

    Google Scholar 

  • M.R. Raupach (1987) ArticleTitle‘A Lagrangian Analysis of Scalar Transfer in Vegetation Canopies’ Ann. Rev. Fluid. Mech. 13 97–129

    Google Scholar 

  • M.R. Raupach P.A. Coppin B.J. Legg (1986) ArticleTitle‘Experiments on Scalar Dispersion Within a Model-Plant Canopy 1 The Turbulence Structure’ Boundary-Layer Meteorol. 35 21–52 Occurrence Handle10.1007/BF00117300

    Article  Google Scholar 

  • M.R. Raupach (1983) ArticleTitle‘Near-Field Dispersion from Instantaneous Sources in the Surface-Layer’ Boundary-Layer Meteorol. 27 105–113 Occurrence Handle10.1007/BF00239608

    Article  Google Scholar 

  • M.R. Raupach R.H. Shaw (1982) ArticleTitle‘Averaging Procedures for Flow Within Vegetation Canopies’ Boundary-Layer Meteorol. 22 79–90 Occurrence Handle10.1007/BF00128057

    Article  Google Scholar 

  • M.R. Raupach (1981) ArticleTitle‘Conditional Statistics of Reynolds Stress in Rough-wall and Smooth-Wall Turbulent Boundary Layers’ J. Fluid Mech. 108 363–382

    Google Scholar 

  • R.H. Shaw (1977) ArticleTitle‘Secondary Wind Speed Maxima Inside Plant Canopies’ J. Appl. Meteorol. 16 IssueID5 514–521 Occurrence Handle10.1175/1520-0450(1977)016<0514:SWSMIP>2.0.CO;2

    Article  Google Scholar 

  • R.H. Shaw W.G. Gao U.K.T. Paw (1989) ArticleTitle‘Detection of Temperature Ramps and Flow Structures at a Deciduous Forest Site’ Agric. For. Meteorol. 47 123–138 Occurrence Handle10.1016/0168-1923(89)90091-9

    Article  Google Scholar 

  • M. Siqueira R. Leuning O. Kolle F.M. Kelliher G.G. Katul (2003) ArticleTitle‘Modeling Sources and Sinks of CO2, H2O and Heat Within a Siberian Pine Forest Using three Inverse Methods’ Quart. J. Roy. Meteorol. Soc. 129 1373–1393 Occurrence Handle10.1256/qj.02.108

    Article  Google Scholar 

  • M. Siqueira G.G. Katul C.T. Lai (2002) ArticleTitle‘Quantifying Net Ecosystem Exchange by Multilevel Ecophysiological and Turbulent Transport Models’ Adv. Water Res. 25 1357–1366 Occurrence Handle10.1016/S0309-1708(02)00061-1

    Article  Google Scholar 

  • M. Siqueira G.G. Katul (2002) ArticleTitle‘Estimating Heat Sources and Fluxes in Thermally Stratified Canopy Flows Using Higher-order Closure Models’ Boundary-Layer Meteorol. 103 125–142 Occurrence Handle10.1023/A:1014526305879

    Article  Google Scholar 

  • Thurtell, G.W.: 1989, ‘Comment on Using K-theory Within and Above the Plant Canopy to Model Diffusion Processes’, in Estimation of Areal Evapotranspiration, IAHS plubl., Vol. 177, pp. 43–80.

  • R. Valentini G. Matteucci A.J. Dolman E.D. Schulze C. Rebmann E.J. Moors A. Granier P. Gross N.O. Jensen K. Pilegaard A. Lindroth A. Grelle C. Bernhofer T. Grunwald M. Aubinet R. Ceulemans A.S. Kowalski T. Vesala U. Rannik P. Berbigier D. Loustau J. Guomundsson H. Thorgeirsson A. Ibrom K. Morgenstern R. Clement J. Moncrieff L. Montagnani S. Minerbi P.G. Jarvis (2000) ArticleTitleRespiration as the Main Determinant of Carbon Balance in European Forests’ Nature 404 861–865 Occurrence Handle10.1038/35009084

    Article  Google Scholar 

  • Wilson N.R. (1989). ‘Turbulent Transport Within the Plant Canopy’, in Estimation of Areal Evapotranspiration, IAHS publ., Vol. 177, pp. 43–80.

  • N.R. Wilson R.H. Shaw (1977) ArticleTitle‘A Higher Order Closure Model for Canopy Flow’ J. Appl. Meteorol. 16 1197–1205 Occurrence Handle10.1175/1520-0450(1977)016<1197:AHOCMF>2.0.CO;2

    Article  Google Scholar 

  • Wyngaard J.C. (1982). Boundary-layer Modelling, in Atmospheric Turbulence and Air Pollution Modelling. F. T. M. Nieuwstadt and H. van Dop (eds), D. Reidel, Dordrecht, pp. 69–158.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Cava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cava, D., Katul, G.G., Scrimieri, A. et al. Buoyancy and The Sensible Heat Flux Budget Within Dense Canopies. Boundary-Layer Meteorol 118, 217–240 (2006). https://doi.org/10.1007/s10546-005-4736-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-005-4736-1

Keywords

Navigation