Log in

Amino acids in CSF and plasma in hyperammonaemic coma due to arginase1 deficiency

  • Online Report
  • Published:
Journal of Inherited Metabolic Disease

Summary

We report the CSF and plasma amino acid concentrations and their ratios in a male patient with arginase1 deficiency with an unusual early presentation at 34 days of age. He developed hyperammonaemic coma (ammonia >400 μmol/L; normal <90 μmol/L) on postnatal day 35. CSF and plasma concentrations were assayed by ion-exchange chromatography on day 36. Arginine was increased both in plasma (971 μmol/L; controls (mean ± 2SD) 50 ± 42) and in CSF (157 μmol/L; controls 19 ± 8.6), resulting in a normal CSF/plasma ratio of 0.16 (controls 0.41 ± 0.26). Interestingly, glutamine was disproportionately high in CSF (3114 μmol/L; controls 470 ± 236) but normal in plasma (420 μmol/L; controls 627 ± 246); the ratio exceeded unity (7.4; controls 0.76 ± 0.31). The CSF/plasma ratios of most neutral amino acids were elevated but not those of the imino- and of the dibasic amino acids lysine and ornithine. The mechanism leading to the increase of most neutral amino acids in brain is not known.

Conclusion: A normal glutamine in plasma does not exclude an increased concentration in CSF; it could be useful to ascertain by MRS that a high CSF glutamine concentration truly reflects a high concentration in brain tissue for better understanding its pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CSF:

cerebrospinal fluid

EEG:

electroencephalography

MRS:

magnetic resonance spectroscopy

References

  • Albrecht J, Dolińska M (2001) Glutamine as a pathogenic factor in hepatic encephalopathy. J Neurosci Res 65: 1–5. doi:10.1002/jnr.1121.

    Article  PubMed  CAS  Google Scholar 

  • Begley DJ, Brightman MW (2003) Structural and functional aspects of the blood-brain barrier. Prog Drug Res 61: 39–78.

    PubMed  CAS  Google Scholar 

  • Braga AC, Vilarinho L, Ferreira E, Rocha H (1997) Hyperargininemia presenting as persistant neonatal jaundice and hepatic cirrhosis. J Pediatr Gastroenterol Nutr 24: 218–221. doi:10.1097/00005176-199702000-00018.

    Article  PubMed  CAS  Google Scholar 

  • Cederbaum SD, Shaw KN, Spector EB, Verity MA, Snodgrass PJ, Sugarman GI (1979) Hyperargininemia with arginase deficiency. Pediatr Res 13: 827–833. doi:10.1203/00006450-197907000-00007.

    Article  PubMed  CAS  Google Scholar 

  • Crombez EA, Cederbaum SD (2005) Hyperargininemia due to liver arginase deficiency. Mol Genet Metab 84: 243–251. doi:10.1016/j.ymgme.2004.11.004.

    Google Scholar 

  • De Deyn PP, Marescau B, Qureshi IA (1997) Hyperargininemia: a treatable inborn error of metabolism? In: De Deyn PP, Marescau B, Quereshi IA, Mori A, eds. Guanidino Compounds in Biology and Medicine, Vol. 1. London: John Libbey & Company Ltd, 53–69.

    Google Scholar 

  • Duran M (2003) Miscellaneous analysis. In: Blau N, Duran M, Blaskovics ME, Gibson KM, eds. Physican’s Guide to the Laboratory Diagnosis of Metabolic Diseases, 2nd edn. Berlin, Heidelberg: Springer, 45–56.

    Google Scholar 

  • Feillet F, Leonard JV (1998) Alternative pathway therapy for urea cycle disorders. J Inherit Metab Dis 21(Suppplement 1): 101–111. doi:10.1023/A:1005365825875.

    Article  PubMed  CAS  Google Scholar 

  • Grody WW, Klein D, Dodson AE, et al (1992) Molecular genetic study of human arginase deficiency. Am J Hum Genet 50: 1281–1290.

    PubMed  CAS  Google Scholar 

  • Iyer R, Jenkinson CP, Vockley JG, Kern RM, Grody WW, Cederbaum S (1998) The human arginase and arginase deficiency. J Inherit Metab Dis 21: 86–100. doi:10.1023/A:1005313809037.

    Article  PubMed  CAS  Google Scholar 

  • Kamoun P, Richard V, Rabier D, Saudubray JM (2002) Plasma lysine concentration and availability of 2-ketoglutarate in liver mitochondria. J Inherit Metab Dis 25: 1–6. doi:10.1023/A:1015195009330.

    Article  PubMed  CAS  Google Scholar 

  • Naylor EW, Cederbaum SD, Evans JE, Tieckelmann H, Guthrie R (1977) Elevated urinary pyrimidine excretion in three patients with arginase deficiency. Am J Hum Gen 29: 81a.

    Google Scholar 

  • Norenberg MD, Martinez-Hernandez A (1979) Fine structural localization of glutamine synthetase in astrocytes of rat brain. Brain Res 161: 303–310. doi:10.1016/0006-8993(79)90071-4.

    Article  PubMed  CAS  Google Scholar 

  • Picker JD, Puga AC, Levy HL, et al (2003) Arginase deficiency with lethal neonatal expression: evidence for glutamine hypothesis of cerebral edema. J Pediatrics 142: 349–352. doi:10.1067/mpd.2003.97.

    Article  Google Scholar 

  • Scaglia F, Lee B (2006) Clinical, biochemical, and molecular spectrum of hyperargininemia due to arginase1 deficiency. Am J Med Genet C Semin Med Genet 142C(2): 113–120. doi:10.1002/ajmg.c.30091.

    Article  PubMed  CAS  Google Scholar 

  • Scholl-Bürgi S, Haberlandt E, Heinz-Erian P, et al (2008) Amino acid cerebrospinal fluid/plasma ratios in children: influence of age, gender and antiepileptic medication. Pediatrics 121(4): e920–e926. doi:10.1542/peds.2007-1631.

    Article  PubMed  Google Scholar 

  • Simmonds HA, Duley JA, Davies PM (1991) Analysis of purines and pyrimidines in blood, urine, and other physiological fluids. In: Hommes FA, ed. Techniques in Diagnostic Human Biochemical Genetics. A Laboratory Manual. New York: Wiley-Liss, 397–424.

    Google Scholar 

  • Terheggen HG, Schwenk A, Lowenthal A, van Sande M, Colombo JP (1969) Argininaemia with arginase deficiency. Lancet 294(7623): 748–749. doi:10.1016/S0140-6736(69)90466-8.

    Article  Google Scholar 

  • Terheggen HG, Schwenk A, Lowenthal A, van Sande M, Colombo JP (1970a) Hyperargininämie mit Arginasedefekt. Eine neue familiäre Stoffwechselstörung. I. Klinische Befunde. Z Kinderheilkd 107: 298–312. doi:10.1007/BF00438892.

    Article  PubMed  CAS  Google Scholar 

  • Terheggen HG, Schwenk A, Lowenthal A, van Sande M, Colombo JP (1970b) Hyperargininämie mit Arginasedefekt. Eine neue familiäre Stoffwechselstörung. II. Biochemische Untersuchungen. Z Kinderheilkd 107: 313–323. doi:10.1007/BF00438893.

    Article  PubMed  CAS  Google Scholar 

  • van Sande M THG, Clara R, Leroy JG, Lowenthal A (1971) Lysine cystine pattern associated with neurological disorders. In: Carson NAJ, Raine DN, eds. Inherited Disorders of Sulfur Metabolism. Edinburgh: Churchill Livingstone, 85–112.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Scholl-Bürgi.

Additional information

Communicating editor: Claude Bachmann

Competing interests: None declared

References to electronic databases: Hyperargininaemia: OMIM 207800. Arginase1: EC 3.5.3.1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholl-Bürgi, S., Baumgartner Sigl, S., Häberle, J. et al. Amino acids in CSF and plasma in hyperammonaemic coma due to arginase1 deficiency. J Inherit Metab Dis 31 (Suppl 2), 323–328 (2008). https://doi.org/10.1007/s10545-008-0903-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10545-008-0903-0

Keywords

Navigation