Log in

Symplectic dynamical low rank approximation of wave equations with random parameters

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

In this paper we propose a dynamical low-rank strategy for the approximation of second order wave equations with random parameters. The governing equation is rewritten in Hamiltonian form and the approximate solution is expanded over a set of 2S dynamical symplectic-orthogonal deterministic basis functions with time-dependent stochastic coefficients. The reduced (low rank) dynamics is obtained by a symplectic projection of the governing Hamiltonian system onto the tangent space to the approximation manifold along the approximate trajectory. The proposed formulation is equivalent to recasting the governing Hamiltonian system in complex setting and looking for a dynamical low rank approximation in the low dimensional manifold of all complex-valued random fields with rank equal to S. Thanks to this equivalence, we are able to properly define the approximation manifold in the real setting, endow it with a differential structure and obtain a proper parametrization of its tangent space, in terms of orthogonal constraints on the dynamics of the deterministic modes. Finally, we derive the Symplectic Dynamically Orthogonal reduced order system for the evolution of both the stochastic coefficients and the deterministic basis of the approximate solution. This consists of a system of S deterministic PDEs coupled to a reduced Hamiltonian system of dimension 2S. As a result, the approximate solution preserves the mean energy over the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Absil, P.-A., Mahony, R., Sepulchre, R.: Riemannian geometry of Grassmann manifolds with a view on algorithmic computation. Acta Appl. Math. 80(2), 199–220 (2004)

    Article  MathSciNet  Google Scholar 

  2. Alnæs, M., Hake, J., Kirby, R., Langtangen, H., Logg, A., Wells, G.: The fenics manual. FEniCS Project, version October 31st (2011)

  3. Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with random input data. SIAM Rev. 52(2), 317–355 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bardos, C., Catto, I., Mauser, N., Trabelsi, S.: Setting and analysis of the multi-configuration time-dependent Hartree–Fock equations. Arch. Ration. Mech. Anal. 198(1), 273–330 (2010)

    Article  MathSciNet  Google Scholar 

  5. Carlberg, K., Tuminaro, R., Boggs, P.: Preserving Lagrangian structure in nonlinear model reduction with application to structural dynamics. SIAM J. Sci. Comput. 37(2), B153–B184 (2015)

    Article  MathSciNet  Google Scholar 

  6. Cheng, M., Hou, T.Y., Zhang, Z.: A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: adaptivity and generalizations. J. Comput. Phys. 242, 753–776 (2013)

    Article  MathSciNet  Google Scholar 

  7. Conte, D., Lubich, C.: An error analysis of the multi-configuration time-dependent Hartree method of quantum dynamics. Math. Model. Numer. Anal. 44(4), 759–780 (2010)

    Article  MathSciNet  Google Scholar 

  8. Dieci, L., Eirola, T.: On smooth decompositions of matrices. SIAM J. Matrix Anal. Appl. 20(3), 800–819 (1999)

    Article  MathSciNet  Google Scholar 

  9. Dieci, L., Russell, R., Van Vleck, E.S.: Unitary integrators and applications to continuous orthonormalization techniques. SIAM J. Numer. Anal. 31(1), 261–281 (1994)

    Article  MathSciNet  Google Scholar 

  10. Feppon, F., Lermusiaux, P.F.J.: Dynamically orthogonal numerical schemes for efficient stochastic advection and lagrangian transport. SIAM Rev. 60(3), 595–625 (2018)

    Article  MathSciNet  Google Scholar 

  11. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, Berlin (2006)

    MATH  Google Scholar 

  12. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, volume 1. New York (1963)

  13. Koch, O., Lubich, C.: Dynamical low-rank approximation. SIAM J. Matrix Anal. Appl. 29(2), 434–454 (2007)

    Article  MathSciNet  Google Scholar 

  14. Koch, O., Lubich, C.: Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics. ESAIM: Math. Model. Numer. Anal. 41(2), 315–331 (2007)

    Article  MathSciNet  Google Scholar 

  15. Lall, S., Krysl, P., Marsden, J.: Structure-preserving model reduction for mechanical systems. Physica D 184(1), 304–318 (2003)

    Article  MathSciNet  Google Scholar 

  16. Lang, S.: Differential Manifolds. Springer, New York (2012)

    Google Scholar 

  17. Libermann, P., Marle, C.M.: Symplectic Geometry and Analytical Mechanics, vol. 35. Springer, Berlin (2012)

    MATH  Google Scholar 

  18. Lubich, C.: From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis. European Mathematical Society, Zurich (2008)

    Book  Google Scholar 

  19. Maboudi, B., Hesthaven, J.S.: Structure preserving model reduction of parametric Hamiltonian systems. SIAM J. Sci. Comput. 39, 2616–2644 (2016)

    MathSciNet  Google Scholar 

  20. Marsden, J.E., Ratiu, T.: Introduction to mechanics and symmetry. Phys. Today 48(12), 65 (1995)

    Article  Google Scholar 

  21. Marsden, J.E., Ratiu, T.: Introduction to Mechanics and Symmetry: A Basic Exposition of Classical Mechanical Systems, vol. 17. Springer, Berlin (2013)

    MATH  Google Scholar 

  22. Mauser, N.J., Trabelsi, S.: L2 analysis of the multi-configuration time-dependent Hartree–Fock equations. Math. Models Methods Appl. Sci. 20(11), 2053–2073 (2010)

    Article  MathSciNet  Google Scholar 

  23. McDuff, D., Salamon, D.: Introduction to Symplectic Topology. Oxford University Press, Oxford (1998)

    MATH  Google Scholar 

  24. Motamed, M., Nobile, F., Tempone, R.: Analysis and computation of the elastic wave equation with random coefficients. Comput. Math. Appl. 70(10), 2454–2473 (2015)

    Article  MathSciNet  Google Scholar 

  25. Musharbash, E., Nobile, F.: Dual dynamically orthogonal approximation of incompressible Navier–Stokes equations with random boundary conditions. Mathicse Technical report 03.2017 (2017)

  26. Musharbash, E., Nobile, F., Zhou, T.: Error analysis of the dynamically orthogonal approximation of time dependent random PDEs. SIAM J. Sci. Comput. 37(2), A776–A810 (2015)

    Article  MathSciNet  Google Scholar 

  27. Nobile, F., Tempone, R., Webster, C.: A sparse grid stochastic collocation method for partial differential equations with random input data. SIAM J. Numer. Anal. 46(5), 2309–2345 (2008)

    Article  MathSciNet  Google Scholar 

  28. Peng, L., Mohseni, K.: Symplectic model reduction of Hamiltonian systems. SIAM J. Sci. Comput. 38(1), A1–A27 (2016)

    Article  MathSciNet  Google Scholar 

  29. Prajna, S.: POD model reduction with stability guarantee. In: Proceedings of 42nd IEEE Conference on Decision and Control, vol. 5, pp. 5254–5258. IEEE (2003)

  30. Roman, S.: Advanced Linear Algebra, vol. 3. Springer, Berlin (2005)

    MATH  Google Scholar 

  31. Ruan, Z.: On real operator spaces. Acta Math. Sin. 19(3), 485–496 (2003)

    Article  MathSciNet  Google Scholar 

  32. Sapsis, T.P., Lermusiaux, P.F.J.: Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty. Physica D 241(1), 60–76 (2012)

    Article  MathSciNet  Google Scholar 

  33. Sapsis, T.P., Lermusiaux, P.F.J.: Dynamically orthogonal field equations for continuous stochastic dynamical systems. Phys. D 238(23–24), 2347–2360 (2009)

    Article  MathSciNet  Google Scholar 

  34. Sapsis, T.P., Lermusiaux, P.F.J.: Dynamical criteria for the evolution of the stochastic dimensionality in flows with uncertainty. Phys. D 241(1), 60–76 (2012)

    Article  MathSciNet  Google Scholar 

  35. Schwab, C., Gittelson, C.: Sparse tensor discretizations of high-dimensional parametric and stochastic PDEs. Acta Numer. 20, 291–467 (2011)

    Article  MathSciNet  Google Scholar 

  36. Steinlechner, M.M.: Riemannian optimization for solving high-dimensional problems with low-rank tensor structure. Ph.D. thesis, EPFL, Lausanne (2016)

  37. Wan, X., Karniadakis, G.E.: Long-term behavior of polynomial chaos in stochastic flow simulations. Comput. Methods Appl. Mech. Eng. 195(41–43), 5582–5596 (2006)

    Article  MathSciNet  Google Scholar 

  38. Weinstein, A.: Symplectic manifolds and their Lagrangian submanifolds. Adv. Math. 6(3), 329–346 (1971)

    Article  MathSciNet  Google Scholar 

  39. **u, D., Hesthaven, J.: High-order collocation methods for differential equations with random inputs. SIAM J. Sci. Comput. 27(3), 1118–1139 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Swiss National Science Foundation under the Project No. 146360 “Dynamical low rank approximation of evolution equations with random parameters” and Project No. 172678 “Uncertainty Quantification Techniques for PDE constrained optimization and random evolution equation”. The authors also acknowledge the support from the Center for ADvanced MOdeling Science (CADMOS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Nobile.

Additional information

Communicated by David Cohen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musharbash, E., Nobile, F. & Vidličková, E. Symplectic dynamical low rank approximation of wave equations with random parameters. Bit Numer Math 60, 1153–1201 (2020). https://doi.org/10.1007/s10543-020-00811-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10543-020-00811-6

Keywords

Mathematics Subject Classification

Navigation