Log in

A rice mutant defective in antioxidant-defense system and sodium homeostasis possesses increased sensitivity to salt stress

  • Original Papers
  • Published:
Biologia Plantarum

Abstract

Screening salt-sensitive mutants is a powerful method to identify genes associated with salt tolerance. We used forward genetic screening with sodium azide-mutated rice (Oryza sativa L. cv. Tainung 67) to identify mutants showing hypersensitivity to salt stress. A new mutant line, named salt hypersensitive 1 (shs1) and exhibiting a severe salt-sensitivity when grown under a high NaCl concentration, was identified; the salt hypersensitivity was caused by duplicate recessive epistasis with mutations likely in two different loci. The shs1 salt sensitive phenotypes included a decreased seed germination rate, reduced shoot height and root length, severe and quick wilting, and overaccumulation of sodium ions in shoots as compared with wild-type plants. In addition, shs1 showed a decreased photosynthetic efficiency and enhanced hydrogen peroxide (H2O2) production under the salt stress. An increased superoxide dismutase activity and decreased catalase activity were responsible for the hyperaccumulation of H2O2 in shs1. The hypersensitivity of shs1 to the salt stress might be caused by an impaired antioxidant machinery and cellular Na+ homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AsA:

ascorbate

APX:

ascorbate peroxidase

CAT:

catalase

DAB:

3,3-diaminobenzidine

Fv/Fm :

variable to maximum chlorophyll a fluorescence ratio

GR:

glutathione reductase

H2O2 :

hydrogen peroxide

NBT:

nitroblue tetrazolium

NB:

Nona Bokra

OH· :

hydroxyl radical

ROS:

reactive oxygen species

SOD:

superoxide dismutase

shs1 :

salt hypersensitive 1

O2 ·− :

superoxide

TNG67:

Tainung 67

References

  • Alessandra, C., Giuseppina, R., Riccardo, A., Rodolfo, F., Paraskevi, T.: Functions of amine oxidases in plant development and defense. — Trends Plant Sci. 11: 80–88, 2006.

    Google Scholar 

  • Amrutha, R.N., Sekhar, P.N., Varshney, R.K., Kishor, P.; Genome-wide analysis and identification of genes related to potassium transporter families in rice (Oryza sativa L.). — Plant Sci. 172: 708–721, 2007.

    Article  CAS  Google Scholar 

  • Asada, K.: The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. — Annu. Rev. Plant Physiol. Plant mol. Biol. 50: 601–639, 1999.

    Article  CAS  PubMed  Google Scholar 

  • Bañuelos, M.A., Garciadeblas, B., Cubero, B., Rodríguez-Navarro, A.: Inventory and functional characterization of the HAK potassium transporters of rice. — Plant Physiol. 130: 784–795, 2002.

    Article  PubMed Central  PubMed  Google Scholar 

  • Bradford, M.M.: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. — Anal. Biochem. 72: 248–254, 1976.

    Article  CAS  PubMed  Google Scholar 

  • Chikelu, M., Rownak, A., Shri, M.J., Glenn, B.G., Francisco, J.Z.A.: Induced mutations for enhancing salinity tolerance in rice. — In: Jenks, M.A., Hasegawa, P.M., Jain, S.M. (ed.); Advances in Molecular Breeding Towards Drought and Salt Tolerant Crops. Pp. 413–454. Springer, Dordrecht 2007.

    Google Scholar 

  • Davenport, R., James, R. A., Zakrisson-Plogander, A., Tester, M., Munns, R.: Control of sodium transport in durum wheat. — Plant Physiol. 137: 807–818, 2005.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Davenport, R. J., Muñoz-Mayor, A., Jha, D., Essah, P. A., Rus, A., Tester, M.: The Na+ transporter AtHKT1 controls xylem retrieval of Na+ in Arabidopsis. — Plant Cell Environ. 30; 497–507, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Foyer, C.H., Harbison, J.: Oxygen metabolism and the regulation of photosynthetic electron transport. — In: Foyer, C.H., Mullineaux, P. (ed.) Causes of Photo-oxidative Stresses and Amelioration of Defense Systems in Plants. Pp. 1–42. CRC Press, Boca Raton 1994.

    Google Scholar 

  • Flowers, T.J., Hajibagheri, M.A., Yeo, A.R.: Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. — Plant Cell Environ. 14: 319–325, 1991.

    Article  Google Scholar 

  • Fukuda, A., Nakamura, A., Tagiri, A., Tanaka, H., Miyao, A., Hirochika, H., Tanaka, Y.: Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. — Plant Cell Physiol. 45: 149–159, 2004.

    Google Scholar 

  • Giannopolitis, C.N., Ries, S.K.: Superoxide dismutases: I. Occurrence in higher plants. — Plant Physiol. 59: 309–314, 1977.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gill, S.S., Tuteja, N.: Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. — Plant Physiol. Biochem. 48: 909–930, 2010.

    Article  CAS  PubMed  Google Scholar 

  • Golldack, D., Quigley, F., Michalowski, C.B., Kamasani, U.R., Bohnert, H.J.: Salinity stress-tolerant and sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. — Plant mol. Biol. 51: 71–81, 2003.

    Article  CAS  PubMed  Google Scholar 

  • Gregorio, G.B., Senadhira, D., Mendoza, R. D.: Screening Rice for Salinity Tolerance. — IRRI Discussion Paper No. 22. International Rice Research Institute, Manila 1997.

    Google Scholar 

  • Hong, C.Y., Chao, Y.Y., Yang, M.Y., Cho, S.C., Kao, C.H.; Na+ but not Cl or osmotic stress is involved in NaClinduced expression of glutathione reductase in roots of rice seedlings. — J. Plant Physiol. 166: 1598–1606, 2009.

    Article  CAS  PubMed  Google Scholar 

  • Hossain, M.A., Nakano, Y., Asada, K.: Monodehydroascorbate reductase in spinach chloroplast and its participation in regeneration of ascorbate for scavenging hydrogen peroxide. — Plant Cell Physiol. 11: 351–358, 1984.

    Google Scholar 

  • Huang, X.Y., Chao, D.Y., Gao, J.P., Zhu, M.Z., Shi, M., Lin, H.X.: A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control. — Genes Dev. 23: 1805–1817, 2009.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huang, Y.G., Zhang, F., Wu, J., Chen, J., Zhou, M.: Differences in physiological traits among salt-stressed barley genotypes. — Commun. Soil Sci. Plant Anal. 37: 557–570, 2006.

    Article  CAS  Google Scholar 

  • Igarashi, Y., Yoshiba, Y., Sanada, Y., Yamaguchi-Shinozaki, K., Wada, K., Shinozaki, K.: Characterization of the gene for Δ1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. — Plant mol. Biol. 33: 857–865, 1997.

    Article  CAS  PubMed  Google Scholar 

  • Islam, M.R., Salam, M.A., Hassan, L., Collard, B.C.Y., Singh, R.K., Gregorio, G.B.: QTL map** for salinity tolerance at seedling stage in rice. — J. Food agr. Sci. 23: 137–146, 2011.

    Google Scholar 

  • James, R.A., Davenport, R.J., Munns, R.: Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. — Plant Physiol. 142: 1537–1547, 2006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kitajima, M., Butler, W.L.: Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone. — Biochim. biophys. Acta 376: 105–115, 1975.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Atienza, J., Jiang, X., Garciadeblas, B., Mendoza, I., Zhu, J.K., Pardo, J.M., Quintero, F.J.: Conservation of the salt overly sensitive pathway in rice. — Plant Physiol. 143; 1001–1012, 2007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mahajan, S., Tuteja, N.: Cold, salinity and drought stresses: an overview. — Arch. Biochem. Biophys. 444: 139–158, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Miao, Y., Dong, L., Wang, P., Wang, X.C., Chen, J., Miao, C., Song, C.P.: An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses. — Plant Cell 18; 2749–2766, 2006.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Munns, R.: Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses. — Plant Cell Environ. 13: 143–160, 1993.

    Google Scholar 

  • Munns, R.: Comparative physiology of salt and water stress. — Plant Cell Environ. 25: 239–250, 2002.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R., James, R.A., Lauchli, A.: Approaches to increasing the salt tolerance of wheat and other cereals. — J. exp. Bot. 57: 1025–1043, 2006.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R., James, R.A., Xu, B., Athman, A., Conn, S.J., Jordans, C., Byrt, C.S., Hare, R.A., Tyerman, S.D., Tester, M., Plett, D., Gilliham, M.: Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. — Nat. Biotechnol. 30: 360–364, 2012.

    Article  CAS  PubMed  Google Scholar 

  • Munns, R., Tester, M.: Mechanisms of salinity tolerance. — Annu. Rev. Plant Biol. 59: 651–681, 2008.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa, D., Abe, K., Miyao, A., Kojima, M., Sakakibara, H., Mizutani, M., Takeda, S.: RSS1 regulates the cell cycle and maintains meristematic activity under stress conditions in rice. — Nat. Commun. 2: 1–11, 2011.

    Article  Google Scholar 

  • Orozco-Cárdenas, M.L., Ryan, C.: Hydrogen peroxide is generated systemically in plant leaves by wounding and systemically in via the octadecanoid pathway. — Proc. nat. Acad. Sci. USA 96: 6553–6557, 1999.

    Article  PubMed Central  PubMed  Google Scholar 

  • Patterson, B.D., Macrae, E.A., Ferguson, I.B.: Estimation of hydrogen peroxide in plant extracts using titanium (IV). — Anal. Biochem. 139: 487–492, 1984.

    Article  CAS  PubMed  Google Scholar 

  • Prasad, S.R., Bagali, P.G., Shailaja, H., Shashidhar, H.E., Hittalmani, S.: Molecular map** of quantitative trait loci associated with seedling tolerance to salt stress in rice (Oryza sativa L.). — Curr. Sci. 78: 162–164, 2000.

    CAS  Google Scholar 

  • Ren, Z.H., Gao, J.P., Li, L.G., Cai, X.L., Huang, W., Chao, D.Y., Zhu, M.Z., Wang, Z.Y., Luan, S., Lin, H.X.: A rice quantitative trait locus for salt tolerance encodes a sodium transporter. — Nat. Genet. 37: 1141–1146, 2005.

    Article  CAS  PubMed  Google Scholar 

  • Roland, F.B., Irwin, W.S.: A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. — J. biol. Chem. 195: 133–140, 1951.

    Google Scholar 

  • Sabouri, H., Rezai, A.M., Moumeni, A., Kavousi, A., Katouzi, M., Sabouri, A.: QTLs map** of physiological traits related to salt tolerance in young rice seedlings. — Biol Plant. 53: 657–662, 2009.

    Article  Google Scholar 

  • Serra, T.S., Figueiredo, D.D., Cordeiro, A.M., Almeida, D.M., Lourenço, T., Abreu, I.A., Sebastián, A., Fernandes, L., Contreras-Moreira, B., Oliveira, M.M.: OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. — Plant mol. Biol. 82: 1–17, 2013.

    Article  Google Scholar 

  • Shi, H., Quintero, F.J., Pardo, J.M., Zhu, J.K.: The putative plasma membrane Na+/H+ antiporter SOS1 controls longdistance Na+ transport in plants. — Plant Cell 14: 465–477, 2002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sunarpi Horie, T., Motoda, J., Kubo, M., Yang, H., Yoda, K., Horie, R., Chan, W.Y., Leung, H.Y., Hattori, K., Konomi, M., Osumi, M., Yamagami, M., Schroeder, J.I., Uozumi, N.; Enhanced salt tolerance mediated by AtHKT1 transporterinduced Na unloading from xylem vessels to xylem parenchyma cells. — Plant J. 44: 928–938, 2005.

    Article  PubMed  Google Scholar 

  • Thomson, M.J., Ocampo, M., Egdane J., Rahman M.A., Sajise, A.G., Adorada, D.L., Tumimbang-Raiz, E., Blumwald, E., Seraj, Z.I., Singh, R.K., Gregorio, G.B., Ismail, A.M.; Characterizing the saltol quantitative trait locus for salinity tolerance in rice. — Rice 3: 148–160, 2010.

    Article  Google Scholar 

  • Waters, S., Gilliham, M., Hrmova, M.: Plant high-affinity potassium (HKT) transporters involved in salinity tolerance; structural insights to probe differences in ion selectivity. — Int. J. mol. Sci. 14: 7660–7680, 2013.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wu, T.M., Lin, W.R., Kao, C.H., Hong, C.Y.: Gene knockout of glutathione reductase 3 results in increased sensitivity to salt stress in rice. — Plant mol. Biol. 87: 555–564, 2015.

    Article  CAS  PubMed  Google Scholar 

  • Yao, X., Horie, T., Xue, S., Leung, H.Y., Katsuhara, M.E., Brodsky, D., Wu, Y.I., Schroeder, J.: Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. — Plant Physiol. 152: 341–355, 2010.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang, Y.L., Xu, S.J., An, L.Z., Chen, N.L.: NADPH oxidasedependent hydrogen peroxide production, induced by salinity stress, may be involved in the regulation of total calcium in roots of wheat. — J. Plant Physiol. 164: 1429–1435, 2007.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, S., Forno, D.A., Cock, J.H., Gomez, K.A.: Laboratory Manual for Physiological Studies of Rice. 2nd Ed. — The International Rice Research Institute, Los Baños 1972.

    Google Scholar 

  • Zhang, Z., Zhang, Q., Wu, J., Zheng, X., Zheng, S., Sun, X., Qiu, Q., Lu, T.: Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. — PLoS ONE 8: e57472, 2013.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng, L., Shannon, M.C., Lesch, S.M.: Timing of salinity stress affects rice growth and yield components. — Agr. Water Manage. 48: 191–206, 2001.

    Article  Google Scholar 

  • Zhou, J., Wang, F., Deng, P., **g, W., Zhang, W.; Characterization and map** of a salt-sensitive mutant in rice (Oryza sativa L.). — J. Integr. Plant Biol. 55: 504–513, 2013.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. -Y. Hong.

Additional information

Acknowledgments: This work was partly supported by a research grant NSC 101-2313-B-002-008-MY3 from the Ministry of Science and Technology of the Republic of China to C.Y. Hong. N.N.P. Chandrika was supported by the National Taiwan University Postdoctoral Research Fellowships. The first two authors contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, K.C., Jwo, W.S., Chandrika, N.N.P. et al. A rice mutant defective in antioxidant-defense system and sodium homeostasis possesses increased sensitivity to salt stress. Biol Plant 60, 86–94 (2016). https://doi.org/10.1007/s10535-015-0561-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10535-015-0561-7

Additional key words

Navigation