Log in

Particulate organic matter quality influences nitrate retention and denitrification in stream sediments: evidence from a carbon burial experiment

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Organic carbon supply is linked to nitrogen transformation in ecosystems. However, the role of organic carbon quality in nitrogen processing is not as well understood. We determined how the quality of particulate organic carbon (POC) influenced nitrogen transformation in stream sediments by burying identical quantities of varying quality POC (northern red oak (Quercus rubra) leaves, red maple (Acer rubrum) leaves, red maple wood) in stream mesocosms and measuring the effects on nitrogen retention and denitrification compared to a control of combusted sand. We also determined how POC quality affected the quantity and quality of dissolved organic carbon (DOC) and dissolved oxygen concentration in groundwater. Nitrate and total dissolved nitrogen (TDN) retention were assessed by comparing solute concentrations and fluxes along groundwater flow paths in the mesocosms. Denitrification was measured by in situ changes in N2 concentrations (using MIMS) and by acetylene block incubations. POC quality was measured by C:N and lignin:N ratios and DOC quality was assessed by fluorescence excitation emission matrix spectroscopy. POC quality had strong effects on nitrogen processing. Leaf treatments had much higher nitrate retention, TDN retention and denitrification rates than the wood and control treatments and red maple leaf burial resulted in higher nitrate and TDN retention rates than burial of red oak leaves. Leaf, but not wood, burial drove pore water to severe hypoxia and leaf treatments had higher DOC production and different DOC chemical composition than the wood and control treatments. We think that POC quality affected nitrogen processing in the sediments by influencing the quantity and quality of DOC and redox conditions. Our results suggest that the type of organic carbon inputs can affect the rates of nitrogen transformation in stream ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexander HD, Arthur MA (2010) Implications of a predicted shift from upland oaks to red maple on forest hydrology and nutrient availability. Can J For Res 40:716–726. doi:10.1139/X10-029

    Article  Google Scholar 

  • AOAC-973.18 (1990) Fiber (acid detergent) and lignin in animal feed. Official methods of analysis of the Association of Official Analytical Chemists, 15th edn. Arlington, Virginia

  • Arango CP, Tank JL, Schaller JM, Royer TV, Bernot MJ, David MB (2007) Benthic organic carbon influences denitrification in streams with high nitrate concentration. Freshw Biol 52:1210–1222. doi:10.1111/j.1365-2427.2007.01758.x

    Article  Google Scholar 

  • Arango CP, Tank JL, Johnson LT, Hamilton SK (2008) Assimilatory uptake rather than nitrification and denitrification determines nitrogen removal patterns in streams of varying land use. Limnol Oceanogr 53:2558–2572. doi:10.4319/lo.2008.53.6.2558

    Article  Google Scholar 

  • Attard E, Recous S, Chabbi A, De Berranger C, Guillaumaud N, Labreuche J, Philippot L, Schmid B, Le Roux X (2011) Soil environmental conditions rather than denitrifier abundance and diversity drive potential denitrification after changes in land uses. Glob Change Biol 17:1975–1989. doi:10.1111/j.1365-2486.2010.02340.x

    Article  Google Scholar 

  • Baker MA, Vervier P (2004) Hydrological variability, organic matters supply and denitrification in the Garonne River ecosystem. Freshw Biol 49:181–190

    Article  Google Scholar 

  • Barnes RT, Smith RL, Aiken GR (2012) Linkages between denitrification and dissolved organic matter quality, Boulder Creek Watershed, Colorado. J Geophys Res 117:G01014. doi:10.1029/2011JG001749

    Google Scholar 

  • Bastviken SK, Eriksson PG, Premrov A, Tonderski K (2005) Potential denitrification in wetland sediments with different plant species detritus. Ecol Eng 25:183–190. doi:10.1016/j.ecoleng.2005.04.013

    Article  Google Scholar 

  • Battin TJ, Kaplan LA, Findlay S, Hopkinson CS, Marti E, Packman AI, Newbold JD, Sabater F (2009) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 1:95–100. doi:10.1038/ngeo101

    Article  Google Scholar 

  • Beaulieu JJ et al (2011) Nitrous oxide emission from denitrification in stream and river networks. Proc Natl Acad Sci 108:214–219. doi:10.1073/pnas.1011464108

    Article  Google Scholar 

  • Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13. doi:10.1111/j.1574-6941.2009.00654.x

    Article  Google Scholar 

  • Bro R, Kiers HAL (2003) A new efficient method for determining the number of components in PARAFAC models. J Chemom 17:274–286. doi:10.1002/cem.801

    Article  Google Scholar 

  • Cheever BM, Kratzer EB, Webster JR (2012) Immobilization and mineralization of N and P by heterotrophic microbes during leaf decomposition. Freshwater Sci 31:133–147. doi:10.1899/11-060.1

    Article  Google Scholar 

  • Coble PG (1996) Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Mar Chem 51:325–346. doi:10.1016/0304-4203(95)00062-3

    Article  Google Scholar 

  • Cornut J, Elger A, Lambrigot D, Marmonier P (2010) Early stages of leaf decomposition are mediated by aquatic fungi in the hyporheic zone of woodland streams. Freshw Biol 55:2541–2556. doi:10.1111/j.1365-2427.2010.02483.x

    Article  Google Scholar 

  • Cory RM, Kaplan LA (2012) Biological lability of streamwater fluorescent dissolved organic matter. Limnol Oceanogr 57:1347–1360. doi:10.4319/lo.2012.57.5.1347

    Article  Google Scholar 

  • Cory RM, McKnight DM (2005) Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ Sci Technol 39:8142–8149. doi:10.1021/es0506962

    Article  Google Scholar 

  • Dahm CN, Valett HM, Baxter CV, Woessner WW (2006) Hyporheic zones. In: Hauer FR, Lamberti GA (eds) Methods in stream ecology. Elsevier, Boston, pp 119–142

    Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    Article  Google Scholar 

  • Dodla SK, Wang JJ, DeLaune RD, Cook RL (2008) Denitrification potential and its relation to organic carbon quality in three coastal wetland soils. Sci Total Environ 407:471–480. doi:10.1016/j.scitotenv.2008.08.022

    Article  Google Scholar 

  • Duff JH, Murphy F, Fuller CC, Triska FJ, Harvey JW, Jackman AR (1998) A mini drivepoint sampler for measuring pore water solute concentrations in the hyporheic zone of sand-bottom streams. Limnol Oceanogr 42:1378–1383

    Article  Google Scholar 

  • Duff JH, Jackman AP, Triska FJ, Sheibley RW, Avanzino RJ (2007) Nitrate retention in riparian ground water at natural and elevated nitrate levels in North Central Minnesota. J Environ Qual 36:343–353

    Article  Google Scholar 

  • Duff JH, Tesoriero AJ, Richardson WB, Strauss EA, Munn MD (2008) Whole-stream response to nitrate loading in three streams draining agricultural landscapes. J Environ Qual 37:1133–1144. doi:10.2134/jeq2007.0187

    Article  Google Scholar 

  • Fellman JB, Hood E, Spencer RGM (2010) Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnol Oceanogr 55:2452–2462. doi:10.4319/lo.2010.55.6.2452

    Article  Google Scholar 

  • Fenchel T, Blackburn TH (1979) Bacteria and mineral cycling. Academic Press

  • Fennel K et al (2009) Modeling denitrification in aquatic sediments. Biogeochemistry 93:159–178. doi:10.1007/s10533-008-9270-z

    Article  Google Scholar 

  • Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76:1260. doi:10.1021/ed076p1260

    Article  Google Scholar 

  • Fulweiler RW, Nixon SW, Buckley BA, Granger SL (2007) Reversal of net dinitrogen gas flux in coastal marine sediments. Nature 448:180–182. doi:10.1038/nature05963

    Article  Google Scholar 

  • Galloway JN et al (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892

    Article  Google Scholar 

  • Greenan CM, Moorman TB, Kaspar TC, Parkin TB, Jaynes DB (2006) Comparing carbon substrates for denitrification of subsurface drainage water. J Environ Qual 35:824–829. doi:10.2134/jeq2005.0247

    Article  Google Scholar 

  • Groffman PM, Holland EA, Myrold DD, Robertson GP, Zou X (1999) Denitrification. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard methods for long-term ecological research. Oxford University Press, New York, pp 272–288

    Google Scholar 

  • Groffman PM et al (2006) Methods for measuring denitrification: diverse approaches to a difficult problem. Ecol Appl 16:2091–2122

    Article  Google Scholar 

  • Heffernan JB et al (2010) Hydrologic and biotic influences on nitrate removal in a subtropical spring-fed river. Limnol Oceanogr 55:249–263. doi:10.4319/lo.2010.55.1.0249

    Article  Google Scholar 

  • Hernes PJ, Bergamaschi BA, Eckard RS, Spencer RGM (2009) Fluorescence-based proxies for lignin in freshwater dissolved organic matter. J Geophys Res 114:G00F03

    Google Scholar 

  • Heppell CM, Heathwaite AL, Binley A, Byrne P, Ullah S, Lansdown K, Keenan P, Trimmer M, Zhang H (2013) Interpreting spatial patterns in redox and coupled water–nitrogen fluxes in the streambed of a gaining river reach. Biogeochemistry. doi:10.1007/s10533-013-9895-4

  • Hill AR, Devito KJ, Campagnolo S, Sanmugadas K (2000) Subsurface denitrification in a forest riparian zone: the interactions between hydrology and supplies of nitrate and organic carbon. Biogeochemistry 51:193–223

    Article  Google Scholar 

  • Hobbie SE (1992) Effects of plant-species on nutrient cycling. Trends Ecol Evol 7:336–339. doi:10.1016/0169-5347(92)90126-V

    Article  Google Scholar 

  • Ishii SKL, Boyer TH (2012) Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: acritical review. Environ Sci Technol 46:2006–2017. doi:10.1021/es2043504

    Article  Google Scholar 

  • Jones JB, Schade JD, Fisher SG, Grimm NB (2007) Organic matter dynamics in Sycamore Creek, a desert stream in Arizona, USA. In: Webster JR, Meyer JL (eds) Stream organic matter budgets. J North Am Benthol Soc 16:78–82

  • Kana TM, Darkangelo C, Hunt MD, Oldham JB, Bennet GE, Cornwell JC (1994) Membrane inlet mass spectrometer for high-precision determination of N2, O2, and Ar in environmental water samples. Anal Chem 66:4166–4170

    Article  Google Scholar 

  • Kaushik NK, Hynes HBN (1971) The fate of dead leaves that fall into streams. Arch Hydrobiol 68:465–515

    Google Scholar 

  • Lovett GM, Weathers KC, Arthur MA, Schultz JC (2004) Nitrogen cycling in a northern hardwood forest: do species matter? Biogeochemistry 67:289–308

    Article  Google Scholar 

  • MATLAB version 8.0.0.783 (2012) Natick, Massachusetts: The MathWorks Inc

  • Medeiros AO, Pascoal C, Graca MAS (2009) Diversity and activity of aquatic fungi under low oxygen conditions. Freshw Biol 54:142–149. doi:10.1111/j.1365-2427.2008.02101.x

    Article  Google Scholar 

  • Mehring AS, Maret TJ (2011) Red maple dominance enhances fungal and shredder growth and litter processing in temporary ponds. Limnol Oceanogr 56:1106–1114. doi:10.4319/lo.2011.56.3.1106

    Article  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626

    Article  Google Scholar 

  • Metzler GM, Smock LA (1990) Storage and dynamics of subsurface detritus in a sand- bottomed stream. Can J Fish Aquat Sci 47:588–594

    Article  Google Scholar 

  • Moorhead DL, Sinsabaugh RL (2006) A theoretical model of litter decay and microbial interaction. Ecol Monogr 76:151–174. doi:10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2

    Google Scholar 

  • Mulholland PJ et al (2008) Stream denitrification across biomes and its response to anthropogenic nitrate loading. Nature 452:202–205. doi:10.1038/nature06686

    Article  Google Scholar 

  • Nykvist N (1962) Leaching and decomposition of litter V. Experiments on Leaf Litter of Alnus glutinosa Fagus silvatica and Quercus robur. Oikos 13:232–248. doi:10.2307/3565087

    Article  Google Scholar 

  • Ohno T (2002) Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter. Environ Sci Technol 36:742–746. doi:10.1021/es0155276

    Article  Google Scholar 

  • Pfenning KS, McMahon PB (1996) Effect of nitrate, organic carbon, and temperature on potential denitrification rates in nitrate-rich riverbed sediments. J Hydrol 187:283–295

    Article  Google Scholar 

  • Puckett LJ, Zamora C, Essaid H, Wilson JT, Johnson HM, Brayton MJ, Vogel JR (2008) Transport and fate of nitrate at the ground-water/surface-water interface. J Environ Qual 37:1034–1050. doi:10.2134/jeq2006.0550

    Article  Google Scholar 

  • Richardson JS (1992) Coarse particulate detritus dynamics in small, montane streams in southwestern British Columbia. Can J Fish Aquat Sci 49:337–346. doi:10.1139/f92-038

    Article  Google Scholar 

  • Richardson WB, Strauss EA, Bartsch LA, Monroe EM, Cavanaugh JC, Vingum L, Soballe DM (2004) Denitrification in the Upper Mississippi River: rates, controls, and contributions to nitrate flux. Can J Fish Aquat Sci 61:1102–1112

    Article  Google Scholar 

  • Sanei H, Outridge PM, Dallimore A, Hamilton PB (2012) Mercury-organic matter relationships in pre-pollution sediments of thermokarst lakes from the Mackenzie River Delta, Canada: the role of depositional environment. Biogeochemistry 107:149–164. doi:10.1007/s10533-010-9543-1

    Article  Google Scholar 

  • Schipper LA, Vojvodic-Vukovic M (1998) Nitrate removal from groundwater using a denitrification wall amended with sawdust: field trial. J Environ Qual 27:664–668

    Article  Google Scholar 

  • Seitzinger S et al (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16:2064–2090. doi:10.1890/1051-0761(2006)016[2064:DALAWA]2.0CO;2

    Google Scholar 

  • Sinsabaugh RL, Carreiro MM, Repert DA (2002) Allocation of extracellular enzymatic activity in relation to litter composition, N deposition, and mass loss. Biogeochemistry 60:1–24. doi:10.1023/A:1016541114786

    Article  Google Scholar 

  • Sobczak WV, Findlay S, Dye S (2003) Relationships between DOC bioavailability and nitrate removal in an upland stream: an experimental approach. 62:309–327. doi:10.1023/A:1021192631423

    Google Scholar 

  • Solarzano L (1969) Determination of ammonia in natural waters by the phenolhypochlorite method. Limnol Oceanogr 14:799–801

    Article  Google Scholar 

  • Starr RC, Gillham RW (1993) Denitrification and organic carbon availability in two aquifers. Groundwater 31:934–947. doi:10.1111/j.1745-6584.1993.tb00867.x

    Article  Google Scholar 

  • Stedmon CA (2000) Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters. Estuar Coast Shelf Sci 51:267–278. doi:10.1006/ecss.2000.0645

    Article  Google Scholar 

  • Stedmon CA, Bro R (2008) Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnol Oceanogr Methods 6:1–6

    Article  Google Scholar 

  • Stedmon CA, Markager S (2005) Resolving the variability of dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol Oceanogr 50:686–697. doi:10.4319/lo.2005.50.2.0686

    Article  Google Scholar 

  • Stelzer RS, Bartsch LA (2012) Nitrate removal in deep sediments of a nitrogen-rich river network: a test of a conceptual model. J Geophys Res Biogeosci 117:G02027. doi:10.1029/2012JG001990

    Google Scholar 

  • Stelzer RS, Bartsch LA, Richardson WB, Strauss EA (2011a) The dark side of the hyporheic zone: depth profiles of nitrogen and its processing in stream sediments. Freshw Biol 56:2021–2033. doi:10.1111/j.1365-2427.2011.02632.x

    Article  Google Scholar 

  • Stelzer RS, Drover DR, Eggert SL, Muldoon MA (2011b) Nitrate retention in a sand plains stream and the importance of groundwater discharge. Biogeochemistry 103:91–107. doi:10.1007/s10533-010-9449-y

    Article  Google Scholar 

  • Stelzer RS, Scott JT, Bartsch LA (2015) Buried particulate organic carbon stimulates denitrification and nitrate retention in stream sediments at the groundwater-surface water interface. Freshw Sci (in press)

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton University Press, Princeton

    Google Scholar 

  • Strauss EA, Lamberti GA (2002) Microbial decomposition of leaf leachates and effect of organic carbon quality on nitrification rates in stream sediments. Freshw Biol 47:65–74

    Article  Google Scholar 

  • Taylor PG, Townsend AR (2010) Stoichiometric control of organic carbon-nitrate relationships from soils to the sea. Nature 464:1178–1181. doi:10.1038/nature08985

    Article  Google Scholar 

  • Teodoru CR, del Giorgio PA, Prairie YT, St-Pierre A (2013) Depositional fluxes and sources of particulate carbon and nitrogen in natural lakes and a young boreal reservoir in Northern Quebec. Biogeochemistry 113:323–339. doi:10.1007/s10533-012-9760-x

    Article  Google Scholar 

  • Tiedje JM (1982) Denitrification. In: Methods of soil analysis, part 2. chemical and microbiological properties-agronomy monograph no. 9 (2nd edn). ASA-SSSA, Madison, WI, pp. 1011–1026

  • van Oevelen D, Middelburg JJ, Soetaert K, Moodley L (2006) The fate of bacterial carbon in an intertidal sediment: modeling an in situ isotope tracer experiment. Limnol Oceanogr 51:1302–1314

    Article  Google Scholar 

  • von Elert E, Martin-Creuzburg D, Le Coz JR (2003) Absence of sterols constrains carbon transfer between cyanobacteria and a freshwater herbivore (Daphnia galeata). Proc R Soc B Biol Sci 270:1209–1214. doi:10.1098/rspb.20033.2357

    Article  Google Scholar 

  • Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Ann R Ecol Syst 17:567–594

    Article  Google Scholar 

  • Wilson HF, Xenopoulos MA (2008) Ecosystem and seasonal control of stream dissolved organic carbon along a gradient of land use. Ecosystems 11:555–568. doi:10.1007/s10021-008-9142-3

    Article  Google Scholar 

  • Yoshimura C, Fujii M, Omura T, Tockner K (2010) Instream release of dissolved organic matter from coarse and fine particulate organic matter of different origins. Biogeochemistry 100:151–165. doi:10.1007/s10533-010-9412-y

    Article  Google Scholar 

  • Zarnetske JP, Haggerty R, Wondzell SM, Baker MA (2011) Labile dissolved organic carbon supply limits hyporheic denitrification. J Geophys Res Biogeosci 116:G04036. doi:10.1029/2011JG001730

    Google Scholar 

Download references

Acknowledgments

We thank Courtney Heling, Mike Louison, Alyssa McCumber and Erin Grantz for technical assistance. Will Cook at Duke University conducted the CN analysis and Jeff Merriam at the United States Forest Service performed the DOC and DON analysis. We thank two anonymous reviewers for their comments on the manuscript. This research was supported by a grant from the University of Wisconsin Water Resources Institute through the Wisconsin Groundwater Coordinating Council. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert S. Stelzer.

Additional information

Responsible Editor: Jennifer Leah Tank.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stelzer, R.S., Thad Scott, J., Bartsch, L.A. et al. Particulate organic matter quality influences nitrate retention and denitrification in stream sediments: evidence from a carbon burial experiment. Biogeochemistry 119, 387–402 (2014). https://doi.org/10.1007/s10533-014-9975-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-014-9975-0

Keywords

Navigation