Log in

The Role of Snowmelt and Spring Rainfall in Inorganic Nutrient Fluxes from a Large Temperate Watershed, the Androscoggin River Basin (Maine and New Hampshire)

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The importance of snowmelt and spring rainfall to water and nutrient exports from macro-scale watersheds (>1000 km2) is not well established. Data collected from the Androscoggin River watershed (Maine and New Hampshire) between February 1999 and March 2002 show that the 90-day spring melt period accounted for 39–57% of total annual discharge and is likely driven both by snowpack melting and spring rainfall. While large loads of dissolved inorganic nitrogen (DIN) are delivered to the watershed from snowmelt and rain (from 1.16× 106 to 1.61× 106 kg N over the study years), only one third of this N load is exported from the basin during the snowmelt period (0.40× 106–0.48 × 106 kg N). Despite reduced residence time and temperature limitations on biological N retention, there is a poor mass balance between DIN input to the watershed and the nitrogen exported from mouth of the river. Inferences from a geochemical hydrograph separation suggests that approximately 51–63% of the water leaving the mouth of the Androscoggin river is from these ‘new’ water sources (rain and snowmelt) while 37–49% is from DIN depleted soil and groundwater. Mixing of water from different sources, as well as nutrient retention by dams in the upper watershed, may account for the large discrepancy between DIN inputs and exports from this watershed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander R.R., Troendle C.A., Kaufmann M.R., Shepperd W.D., Crouch G.L. and Watkins R. 1985. The Fraser Experimental Forest, Colorado: research program and published research 1937–1985. General Technical Report RM-118, Fort Collins, Colorado. United States Department of Agriculture, Forest Service. Rocky Mountain Forest and Range Experimental Station, 35 pp.

  • Anderson D.M. (1997). Bloom dynamics of toxic Alexandrium species in the northeastern, US Limnol. Oceanogr. 42:1009–1022

    Article  Google Scholar 

  • Boyer E.W., Goodale C.L., Jaworski N.A., Howarth R.W. (2002). Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry 57/58:137–169

    Article  Google Scholar 

  • Burns D.A. and Kendall C. 2002. Analysis of delta-15N and delta-18O to differentiate nitrate sources in runoff at two watersheds in the Catskill Mountains of New York. Water Resour. Res. 38(5): 9.1–9.12.

    Google Scholar 

  • Creed I.F., Band L.E., Foster N.W., Morrison I.K., Nicolson J.A., Semkin R.S., Jeffries D.S. (1996). Regulation of nitrate-N release from temperate forests: A test of the N flushing hypothesis. Water Resour. Res. 32(11):3337–3354

    Article  Google Scholar 

  • Genereux D. (1998). Quantifying uncertainty in tracer-based hydrograph separations. Water Resour. Res. 34:915–919

    Article  Google Scholar 

  • Green P., Vörösmarty C.J., Meybeck M., Galloway J., Peterson B.J., Boyer E.W. (2003). Pre-Industrial and contemporary fluxes of nitrogen through rivers: a global assessment based on typology. Biogeochemistry 68(1):71–105

    Article  Google Scholar 

  • Groffman P.M., Holland E., Myrold D.D., Robertson G.P., Zou X. (1999). Denitrification. In: Robertson G.P., Bledsoe C.S., Coleman D.C., Sollins P. (eds). Standard Soil Methods for Long Term Ecological Research. Oxford University Press, New York, pp. 272–288

    Google Scholar 

  • Hornbeck J.W., Bailey S.W., Buso D.C., Shanley J.B. (1997). Streamwater chemistry and nutrient budgets for forested watersheds in New England: variability and management implications. For. Ecol. Manage. 93:73–89

    Article  Google Scholar 

  • Howarth R.W., Billen G., Swaney A., Townsend D., Jaworski N., Lajtha K., Downing J.A., Elmgren R., Caraco N., Jordan T., Berendse F., Freney J., Kudeyarov V., Murdoch P., Zhao-Liang Z. (1996). Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:75–139

    Article  Google Scholar 

  • Hunt C.W., Loder T. III, Vörösmarty C. (2005). Spatial and temporal patterns of inorganic nutrient concentrations in the Androscoggin and Kennebec Rivers, Maine. Water Air Soil Pollut 163:303–323

    Article  Google Scholar 

  • Jansson M., Anderson R., Berggren H., Leonardson L. (1994). Wetlands and lakes as nitrogen traps. Ambio 23:320–325

    Google Scholar 

  • Jordan C.E., Talbot R.W. (2000). Direct atmospheric deposition of water-soluble nitrogen to the Gulf of Maine. Global Biogeochem. Cycles 14(4):1315–1329

    Article  Google Scholar 

  • Laudon H., Slaymaker O. (1997). Hydrograph separation using stable isotopes, silica, and electrical conductivity: an alpine example. J. Hydrol. 201:82–101

    Article  Google Scholar 

  • Lefer B.L., Talbot R.W. (1999). Nitric acid and ammonia at a rural northeastern US site. J. Geophys. Res. 104:1645–1661

    Article  Google Scholar 

  • Mayer B., Boyer E.W., Goodale C., Jaworski N.A., Van Breemen N., Howarth R.W., Seitzinger S., Billen G., Lajtha K., Nadelhoffer K., Van Dam D., Hetling L.J., Nosal M., Paustian K. (2002). Sources of nitrate in rivers draining sixteen watersheds in the northeastern US: isotopic constraints. Biogeochemistry 57/58:171–197

    Article  Google Scholar 

  • Mitchell M.J., Driscoll C.T., Kahl J.S., Likens G.E., Murdoch P.S., Pardo L.H. (1996). Climatic control on nitrate loss from forested watersheds in the northeastern United States. Environ. Sci. Technol. 30:2609–2612

    Article  Google Scholar 

  • Montgomery D.L., Robinson G.R. Jr., Ayotte J.D., Flanagan S.M. and Robinson K.W. 2002. Digital data set of generalized lithogeochemical characteristics of near-surface bedrock in the New England coastal basins. USGS Fact Sheet 003-02.

  • Nixon S.W. (2003). Replacing the Nile – are anthropogenic nutrients providing the fertility once brought to the Mediterranean by a great river? Ambio 32:30–39

    Article  PubMed  Google Scholar 

  • Ollinger S.V., Aber J.D., Reich P.B., Freuder R.J. (2002). Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests. Global Change Biol. 8:545–562

    Article  Google Scholar 

  • Rascher C.M., Driscoll C.T., Peters N.E. (1987). Concentration and flux of solutes from snow and forest floor during snowmelt in the West-Central Adirondack region of New York. Biogeochemistry 3:209–224

    Article  Google Scholar 

  • Seitzinger S.P., Styles R.V., Boyer E.W., Alexander R.B., Billen G., Howarth R.W., Mayer B., Van Breemen N. (2002). Nitrogen retention in rivers: model development and application to watersheds in the northeastern USA. Biogeochemistry 57/58:199–237

    Article  Google Scholar 

  • Shanley J.B., Chalmers A. (1999). The effect of frozen soil on snowmelt runoff at Sleepers River, Vermont. Hydrol. Process. 13:1843–1857

    Article  Google Scholar 

  • Shanley J.B., Kendall C., Smith T.E., Wolock D.M., McDonnell J.J. (2002). Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA. Hydrol. Process. 16:589–609

    Article  Google Scholar 

  • Shepard D. 1968. A two dimensional interpolation function for irregularly-spaced data. In: ACM National Conference Proceedings. Association for Computing Machinery, pp. 517–523.

  • Sickman J.O., Leydecker A.L., Chang C.C.Y., Kendall C., Melack J.M., Lucero D.M., Schimel J. (2003). Mechanisms underlying export of N from high-elevation catchments during seasonal transitions. Biogeochemistry 64:1–24

    Article  Google Scholar 

  • Sklash M.G., Farvolden R.N. (1979). The role of groundwater in storm runoff. J. Hydrol. 43:45–65

    Article  Google Scholar 

  • Soulsby C., Rodgers P.J., Petry J., Hannah D.M., Malcolm I.A., Dunn S.M. (2004). Using tracers to upscale flow path understanding in mesoscale mountainous catchments: two examples from Scotland. J. Hydrol. 291:174–196

    Article  Google Scholar 

  • Szilágyi F., Somlyody L., Koncsos L. (1990). Operation of the Kis–Balaton reservoir: evaluation of nutrient removal rates. Hydrobiologia 191:297–306

    Article  Google Scholar 

  • Uhlenbrook S., Roser S., Tilch N. (2004). Hydrological process representation at the meso-scale: the potential of a distributed, conceptual catchment model. J. Hydrol. 291:278–296

    Article  Google Scholar 

  • Van Breemen N., Boyer E.W., Goodale C.L., Jaworski N.A., Paustian K., Seitzinger S.P., Lajtha K., Mayer B., Van Dam D., Howarth R.W., Nadelhoffer K.J., Eve M., Billen G. (2002). Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern USA. Biogeochemistry 57/58:267–293

    Article  Google Scholar 

  • Vitousek P.M., Aber J.D., Howarth R.W., Likens G.E., Matson P.A., Schindler D.W., Schlesinger W.H., Tilman D.G. (1997). Human alterations of the global nitrogen cycle: sources and consequences. Ecol. Appl. 7:737–750

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Autumn J. Oczkowski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oczkowski, A.J., Pellerin, B.A., Hunt, C.W. et al. The Role of Snowmelt and Spring Rainfall in Inorganic Nutrient Fluxes from a Large Temperate Watershed, the Androscoggin River Basin (Maine and New Hampshire). Biogeochemistry 80, 191–203 (2006). https://doi.org/10.1007/s10533-006-9017-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-006-9017-7

Keywords

Navigation