Log in

Species-specific Effects of Vascular Plants on Carbon Turnover and Methane Emissions from Wetlands

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Species composition affects the carbon turnover and the formation and emission of the greenhouse gas methane (CH4) in wetlands. Here we investigate the individual effects of vascular plant species on the carbon cycling in a wetland ecosystem. We used a novel combination of laboratory methods and controlled environment facilities and studied three different vascular plant species (Eriophorum vaginatum, Carex rostrata and Juncus effusus) collected from the same wetland in southern Sweden. We found distinct differences in the functioning of these wetland sedges in terms of their effects on carbon dioxide (CO2) and CH4 fluxes, bubble emission of CH4, decomposition of 14C-labelled acetate into 14CH4 and 14CO2, rhizospheric oxidation of CH4 to CO2 and stimulation of methanogenesis through root exudation of substrate (e.g., acetate). The results show that the emission of CH4 from peat–plant monoliths was highest when the vegetation was dominated by Carex (6.76 mg CH4 m−2 h−1) than when it was dominated by Eriophorum (2.38 mg CH4 m−2 h−1) or Juncus (2.68 mg CH4 m−2 h−1). Furthermore, the CH4 emission seemed controlled primarily by the degree of rhizospheric CH4 oxidation which was between 20 and 40% for Carex but >90% for both the other species. Our results point toward a direct and very important linkage between the plant species composition and the functioning of wetland ecosystems and indicate that changes in the species composition may alter important processes relating to controls of and interactions between greenhouse gas fluxes with significant implications for feedback mechanisms in a changing climate as a result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandersson H., Karlström C. and Larsson-McCann S. 1991. Temperature and precipitation in Sweden 1961–90. Reference normals. Meteorologi 81. SMHIs tryckeri, Norrkö**, p. 11.

  • W. Armstrong S.H.F.W. Justin P.M. Beckett S. Lythe (1991) ArticleTitleRoot adaptation to soil waterlogging Aquat. Bot. 39 57–73 Occurrence Handle10.1016/0304-3770(91)90022-W

    Article  Google Scholar 

  • Jr. B.G. Avery R.D. Shannon J.R. White C.S. Martens M.J. Alperin (2003) ArticleTitleControls on methane production in a tidal freshwater estu-ary and a peatland: methane production via acetate fermentation and CO2 reduction Biogeochemistry 62 19–37 Occurrence Handle10.1023/A:1021128400602

    Article  Google Scholar 

  • L.M. Bellisario J.L. Bubier T.R. Moore (1999) ArticleTitleControls on CH4 emissions from a northern peatland Global Biogeochem. Cycles 13 81–91 Occurrence Handle10.1029/1998GB900021

    Article  Google Scholar 

  • W.D. Billings J.O. Luken D.A. Mortensen K.M. Peterson (1982) ArticleTitleArctic tundra: a source or sink for atmospheric carbon di-oxide in a changing environment Oecologia 53 7–11 Occurrence Handle10.1007/BF00377129

    Article  Google Scholar 

  • D.R. Boone (1991) Ecology of methanogenesis J.E. Rogers W.B. Whitman (Eds) Microbial Production and Consumption of Greenhouse Gases: MethaneNi-trogen Oxides, and Halomethanes American Society for Microbiology Washington, DC 57–70

    Google Scholar 

  • J.P. Chanton J.W.H. Dacey (1991) Effects of vegetation on methane flux, reservoirs, and carbon isotopic composition T.D. Sharkey E.A. Holland H.A. Mooney (Eds) Trace Gas Emissions by Plants Academic Press San Diego 65–92

    Google Scholar 

  • J.P. Chanton J.E. Bauer P.A. Glaser D.I. Siegel C.A. Kelley S.C. Tyler E.H. Romanowicz A. Lazrus (1995) ArticleTitleRadiocarbon evidence for the substrates supporting meth-ane formation within northern Minnesota peatlands Geochim. Cosmochim. Acta 59 3663–3668 Occurrence Handle10.1016/0016-7037(95)00240-Z

    Article  Google Scholar 

  • F.S. Chapin SuffixIII G.R. Shaver (1985) ArticleTitleIndividualistic growth response of tundra plant species to environmental manipulations in the field Ecology 66 564–576

    Google Scholar 

  • L.S. Chasar J.P. Chanton P.H. Glaser D.I. Siegel J.S. Rivers (2000) ArticleTitleRadiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH4 in a northern Minnesota peatland Global Biogeochem. Cycles 14 1095–1108 Occurrence Handle10.1029/1999GB001221

    Article  Google Scholar 

  • T.R. Christensen N. Panikov M. Mastepanov (2003) ArticleTitleBiotic controls on CO2 and CH4 exchange in wetlands – a closed environmental study Biogeochemistry 64 337–354 Occurrence Handle10.1023/A:1024913730848

    Article  Google Scholar 

  • T.R. Christensen T. Friborg M. Sommerkorn J. Kaplan L. Illeris H. Soegaard C. Nordstroem S. Jonasson (2000) ArticleTitleTrace gas exchange in a high arctic valley 1: variations in CO2 and CH4 flux between tundra vegetation types Global Biogeochem. Cycles 14 701–713 Occurrence Handle10.1029/1999GB001134

    Article  Google Scholar 

  • T.R. Christensen S. Jonasson T.V. Callaghan M. Havström (1999) ArticleTitleOn the potential CO2 releases from tundra soils in a changing climate Appl. Soil Ecol. 11 127–134 Occurrence Handle10.1016/S0929-1393(98)00146-2

    Article  Google Scholar 

  • W.E. Daulat R.S. Clymo (1998) ArticleTitleEffects of temperature and watertable on the efflux of methane from peatland surface cores Atmos. Environ. 32 3207–3218 Occurrence Handle10.1016/S1352-2310(98)00078-8

    Article  Google Scholar 

  • J.G. Ferry (1997) ArticleTitleMethene: small moleculebig impact Science 278 1413–1414 Occurrence Handle10.1126/science.278.5342.1413 Occurrence Handle9411766

    Article  PubMed  Google Scholar 

  • P. Frenzel E. Karofeld (2000) ArticleTitleCH4 emission from a hollow-ridge complex in a raised bog: the role of CH4 production and oxidation Biogeochemistry 51 91–112 Occurrence Handle10.1023/A:1006351118347

    Article  Google Scholar 

  • P. Frenzel J. Rudolph (1998) ArticleTitleMethane emission from a wetland plant: the role of CH4 oxidation in Eriophorum Plant Soil 202 27–32 Occurrence Handle10.1023/A:1004348929219

    Article  Google Scholar 

  • P. Frenzel (2000) Plant-associated methane oxidation in rice fields and wet-lands B Schink (Eds) Microbial Ecology NumberInSeriesVol. 16 Kluwer New York 85–114

    Google Scholar 

  • A.L. Greenup M.A. Bradford P.N. McNamara P. Ineson J.A. Lee (2000) ArticleTitleThe role of Eriophorum vagi-natum in CH4 flux from an ombrotrophic peat-land Plant Soil 227 265–272 Occurrence Handle10.1023/A:1026573727311

    Article  Google Scholar 

  • M.E. Hines K.N. Duddleston R.P. Kiene (2001) ArticleTitleCarbon flow to acetate and C1 compounds in northern wetlands Geophys. Res. Lett. 28 4251–4254 Occurrence Handle10.1029/2001GL012901

    Article  Google Scholar 

  • E.H. Hogg (1993) ArticleTitleDecay potential of hummock and hollow Sphagnum peats at different depths in a Swedish raised bog Oikos 66 269–278

    Google Scholar 

  • R.B. Jackson M.M. Caldwell (1992) ArticleTitleShading and the capture of localized soil nutrients: nutri-ent contents, carbohydrates and root uptake kinetics of a perennial tussock grass Oecologia 91 457–462 Occurrence Handle10.1007/BF00650316

    Article  Google Scholar 

  • A. Joabsson T.R. Christensen B. Wallén (1999) ArticleTitleVascular plant controls on methane emissions from north-ern peatforming wetlands Trends Ecol. Evol. 14 385–388 Occurrence Handle10.1016/S0169-5347(99)01649-3 Occurrence Handle10481199

    Article  PubMed  Google Scholar 

  • A. Joabsson T.R. Christensen (2001) ArticleTitleMethane emissions from wetlands and their relationship with vascular plants: an Arctic example Global Change Biol. 7 919–932 Occurrence Handle10.1046/j.1354-1013.2001.00044.x

    Article  Google Scholar 

  • G.M. King (1992) Ecological aspects of methane oxidation, a key determi-nant of global methane dynamics K.C. Marshall (Eds) Microbial Ecology Plenum Press New York

    Google Scholar 

  • J.Y. King W.S. Reeburgh S.K. Regli (1998) ArticleTitleMethane emission and transport by arctic sedges in Alaska: results of a vegetation removal experiment J. Geophys. Res. 103 29083–29092 Occurrence Handle10.1029/98JD00052

    Article  Google Scholar 

  • H. Končalová (1990) ArticleTitleAnatomical adaptations to waterlogging in roots of wet-land graminoids: limitations and drawbacks Aquat. Bot. 38 127–134 Occurrence Handle10.1016/0304-3770(90)90102-Q

    Article  Google Scholar 

  • J. Le Mer P. Roger (2001) ArticleTitleProduction, oxidation, emission and consumption of methane by soils: a review Eur. J. Soil Biol. 37 25–50 Occurrence Handle10.1016/S1164-5563(01)01067-6

    Article  Google Scholar 

  • J.E. Lombardi M.A. Epp J.P. Chanton (1997) ArticleTitleInvestigation of the methyl fluoride technique for deter-mining rhizospheric methane oxidation Biogeochemistry 36 153–172 Occurrence Handle10.1023/A:1005750201264

    Article  Google Scholar 

  • H. Marschner (1995) Mineral nutrition of higher plants, 2nd edn Academic Press London 560

    Google Scholar 

  • W.C. Oechel G.L. Vourlitis S.J. Hastings R.C. Zulueta L. Hinzman D. Kane (2000) ArticleTitleAcclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming Nature 406 978–980 Occurrence Handle10.1038/35023137 Occurrence Handle10984048

    Article  PubMed  Google Scholar 

  • M. Olsrud T.R. Christensen (2004) ArticleTitleCarbon cycling in subarctic tundra; seasonal variation in ecosystem partitioning based on in situ 14C pulse-labelling Soil Biol. Biochem 36 245–253 Occurrence Handle10.1016/j.soilbio.2003.08.026

    Article  Google Scholar 

  • R.S. Oremland (1988) Biogeochemistry of methanogenic bacte-ria A.J.B. Zehnder (Eds) Biology of Anaerobic Microorganisms John Wiley New York 641–703

    Google Scholar 

  • N.S. Panikov A.Ju. Gorbenko (1992) ArticleTitleThe dynamics of gas exchange between soil and atmos-phere in relation to plant–microbe interactions: fluxes measuring and model-ing Ecol. Bull. (Copenhagen) 42 280–287

    Google Scholar 

  • T.J. Popp J.P. Chanton G.J. Whiting N. Grant (2000) ArticleTitleEvaluation of methane oxidation in the rhizosphere of Carex dominated fen in north central AlbertaCanada Biogeochemistry 51 259–281 Occurrence Handle10.1023/A:1006452609284

    Article  Google Scholar 

  • T. Saarinen (1998) ArticleTitleInternal C:N balance and biomass partitioning of Carex rostrata grown at three levels of nitrogen supply Can. J. Bot. 76 762–768 Occurrence Handle10.1139/cjb-76-5-762

    Article  Google Scholar 

  • J.P. Schimel (1995) ArticleTitlePlant transport and methane production as controls on methane flux from arctic wet meadow tundra Biogeochemistry 28 183–200 Occurrence Handle10.1007/BF02186458

    Article  Google Scholar 

  • G.R. Shaver J. Kummerow (1992) Phenology, resource allocation, and growth of arctic vas-cular plants F.S. III Chapin R.L. Jefferies J.F. Reynolds G.R. Shaver J. Svoboda (Eds) Arctic Ecosystems a Changing Climate. An Ecophysiological Perspec-tive Academic Press, Inc. San Diego 193–211

    Google Scholar 

  • L. Ström A. Ekberg M. Mastepanov T.R. Christensen (2003) ArticleTitleThe effect of vascular plants on carbon turnover and methane emission from a tundra wetland Global Change Biol. 9 1185–1192 Occurrence Handle10.1046/j.1365-2486.2003.00655.x

    Article  Google Scholar 

  • K.L. Thomas J. Benstead K.L. Davies D. Lloyd (1996) ArticleTitleRole of wetland plants in the diurnal controls of CH4 and CO2 fluxes in peat Soil Biol. Biochem. 28 17–23 Occurrence Handle10.1016/0038-0717(95)00103-4

    Article  Google Scholar 

  • J.A. van Veen R. Merckx S.C. de Geijn (1989) ArticleTitlePlant and soil related controls of the flow of carbon from roots through the soil microbial biomass Plant Soil 115 179–188 Occurrence Handle10.1007/BF02202586

    Article  Google Scholar 

  • J.M. Waddington N.T. Roulet R.V. Swanson (1996) ArticleTitleWater table control of CH4 emission enhancement by vascular plants in boreal peatlands J. Geophys. Res. 101 22775–22785 Occurrence Handle10.1029/96JD02014

    Article  Google Scholar 

  • A. Weißner P. Kuschk U. Stottmeister (2002) ArticleTitleOxygen release by roots of Thypha latifolia Juncus effusus in laboratory hydroponic sys-tems Acta Biotechnol. 22 209–216 Occurrence Handle10.1002/1521-3846(200205)22:1/2<209::AID-ABIO209>3.0.CO;2-O

    Article  Google Scholar 

  • G.J. Whiting J.P. Chanton (1992) ArticleTitlePlant-dependent CH4 emission in a subarctic Canadian fen Global Biogeochem. Cycles 6 225–231

    Google Scholar 

  • G.J. Whiting J.P. Chanton (1993) ArticleTitlePrimary production control of methane emission from wetlands Nature 364 794–795 Occurrence Handle10.1038/364794a0

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lena Ström.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ström, L., Mastepanov, M. & Christensen, T.R. Species-specific Effects of Vascular Plants on Carbon Turnover and Methane Emissions from Wetlands. Biogeochemistry 75, 65–82 (2005). https://doi.org/10.1007/s10533-004-6124-1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-004-6124-1

Keywords

Navigation