Log in

Discrimination between farmed and free-living invasive salmonids in Chilean Patagonia using stable isotope analysis

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

In Chilean Patagonia relatively pristine aquatic environments are being modified by the introduction of exotic salmonids, initially through their deliberate release for sport fishing since the early twentieth century, and more recently via the accidental escape from fish farms. There is therefore a need to reliably distinguish between naturally reproducing and fugitive salmonids associated with the Chilean salmonid farming industry, the second largest in the world. We tested the ability of stable isotope analysis (SIA) and analysis of scale growth profiles to discriminate between farmed and free-living salmonids sampled around the Island of Chiloé. Juvenile Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) from aquaculture facilities were significantly more enriched in δ15N and lipid-corrected δ13C than river-caught individuals. Scale growth slopes during the first year in freshwater were significantly higher in farmed than in wild-caught rainbow trout, indicating faster somatic growth under hatchery conditions. Stable isotopes analysis classified 94% of juvenile Atlantic salmon and rainbow trout to their correct farm or free-living groups. Our results, therefore, can help to elucidate the origin and spread of exotic invasive salmonids in Chile, and address one of the biggest threats to native freshwater fishes in Patagonia and other temperate zones of the Southern Hemisphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson C, Cabana G (2005) δ15N in riverine food webs: effects of N inputs from agricultural watersheds. Can J Fish Aquat Sci 62:333–340. doi:10.1139/f04-191

    Article  CAS  Google Scholar 

  • Arismendi I (2009) The success of non-native salmon and trout in Southern Chile: human, environmental and invader dimensions in a conceptual model of biological invasion processes. PhD thesis, Universidad Austral de Chile, Department of Forest Sciences, 173 pp

  • Arismendi I, Soto D, Penaluna B, Jara C, Leal C, León-Muñoz J (2009) Aquaculture, non-native salmonid invasions and associated declines of native fishes in Northern Patagonian lakes. Freshw Biol 54:1135–1147. doi:10.1111/j.1365-2427.2008.02157.x

    Article  CAS  Google Scholar 

  • Arrington DA, Winmiller KO (2002) Preservation effects on stable isotope analysis of fish muscle. Trans Am Fish Soc 131:337–342. doi:10.1577/1548-8659(2002)131<0337:PEOSIA>2.0.CO;2

    Article  CAS  Google Scholar 

  • Aursand M, Mabon F, Martin G (2000) Characterization of farmed and wild salmon (Salmo salar) by a combined use of compositional and isotopic analyses. J Am Oil Chem Soc 77:659–666. doi:10.1007/s11746-000-0106-5

    Article  CAS  Google Scholar 

  • Barel CDN, Dorit R, Greenwood PH, Fryer G, Hughes N, Jackson PBN, Kawanabe H, Lowe-McConnell RH, Nagoshi M, Ribbink AJ, Trewavas E, Witle F, Yakaoka H (1985) Destruction of fisheries in Africa’s lakes. Nature 315:19–20. doi:10.1038/315019a0

    Article  Google Scholar 

  • Barnes C, Jennings S, Polunin NVC, Lancaster JE (2008) The importance of quantifying inherent variability when interpreting stable isotope field data. Oecologia 155:227–235. doi:10.1007/s00442-007-0904-y

    Article  PubMed  Google Scholar 

  • Basulto S (2003) El largo viaje de los salmones: una crónica olvidada. Propagación y cultivo de especies acuáticas en chile. Maval Limitada (ed), Santiago de Chile

  • Bernard RL, Myers KW (1994) The performance of quantitative scale pattern analysis in the identification of hatchery and wild steelhead. (NPAFC Doc. 62.). FRI-UW-94 10, 1–19. 1994. Seattle, Fisheries Research Institute, School of Fisheries, University of Washington

  • Bjørndal T (2001) The competitiveness of the Chilean salmon aquaculture industry. Centre for Fisheries Economics, SNF-project 5400, Discussion Paper 7

  • Bosley KL, Witting DA, Chambers RC, Wainright SC (2002) Estimating turnover rates of carbon and nitrogen in recently metamorphosed winter flounder Pseudopleuronectes americanus with stable isotopes. Mar Ecol Prog Ser 236:233–240. doi:10.3354/meps236233

    Article  Google Scholar 

  • Buschmann AH, Cabello F, Young K, Carvajal J, Varela DA, Henríquez L (2009) Salmon aquaculture and coastal ecosystem health in Chile: analysis of regulations, environmental impacts and bioremediation systems. Ocean Coast Man 52:243–249. doi:10.1016/j.ocecoaman.2009.03.002

    Article  Google Scholar 

  • Cabana G, Rasmussen JB (1994) Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372:255–257. doi:10.1038/372255a0

    Article  CAS  Google Scholar 

  • Ciancio JE, Pascual MA, Lancelotti J, Riva Rossi CM, Botto F (2005) Natural colonization and establishment of a chinook salmon, Oncorhynchus tshawytscha, population in the Santa Cruz River, an Atlantic basin of Patagonia. Environ Biol Fish 74:219–227

    Article  Google Scholar 

  • Ciancio JE, Pascual MA, Botto F, Frere E, Iribarne O (2008a) Trophic relationships of exotic anadromous salmonids in the southern Patagonian Shelf as inferred from stable isotopes. Limnol Oceanogr 53:788–798

    Article  Google Scholar 

  • Ciancio JE, Pascual MA, Botto F, Amaya-Santi M, O’Neal S, Riva-Rossi C, Iribarne O (2008b) Stable isotope profiles of partially migratory salmonid populations in Atlantic rivers of Patagonia. J Fish Biol 72:1708–1719. doi:10.1111/j.1095-8649.2008.01846.x

    Article  CAS  Google Scholar 

  • Coplen TB (1995) Discontinuance of SMOW and PDB. Nature 373:285. doi:10.1038/375285a0

    Article  Google Scholar 

  • Correa C, Gross MR (2008) Chinook salmon invade southern South America. Biol Invasions 10:615–639. doi:10.1007/s10530-007-9157-2

    Article  Google Scholar 

  • Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149. doi:10.1016/0016-7037(57)90024-8

    Article  CAS  Google Scholar 

  • Cucherousset J, Aymes JC, Santoul F, Cereghino R (2007) Stable isotope evidence of trophic interactions between introduced brook trout Salvelinus fontinalis and native brown trout Salmo trutta in a mountain stream of south-west France. J Fish Biol 71(SupplD):210–223. doi:10.1111/j.1095-8649.2007.01675.x

    Article  Google Scholar 

  • Cunjak RA, Roussel J-M, Gray MA, Dietrich JP, Cartwright DF, Munkittrick KR, Jardine TD (2005) Using stable isotope analysis with telemetry or mark-recapture data to identify fish movement and foraging. Oecologia 144:636–646. doi:10.1007/s00442-005-0101-9

    Article  CAS  PubMed  Google Scholar 

  • Curry RA (2005) Assessing the reproductive contributions of sympatric anadromous and freshwater-resident brook trout. J Fish Biol 66:741–757. doi:10.1111/j.0022-1112.2005.00636.x

    Article  Google Scholar 

  • Cury P, Shannon LJ, Shin YJ (2003) The functioning of marine ecosystems: a fisheries perspective. In: Sinclair M, Valdimarsson G (eds) Responsible fisheries in the marine ecosystem. FAO and CABI publishing, Rome, pp 103–123

    Chapter  Google Scholar 

  • Dalerum F, Angerbjörn A (2005) Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144:647–658. doi:10.1007/s00442-005-0118-0

    Article  CAS  PubMed  Google Scholar 

  • Dempson JB, Power M (2004) Use of stable isotopes to distinguish farmed from wild Atlantic salmon, Salmo salar. Ecol Freshw Fish 13:176–184. doi:10.1111/j.1600-0633.2004.00057.x

    Article  Google Scholar 

  • Doucett RR, Power G, Barton DR, Drimmie RJ, Cunjak RA (1996) Stable isotope analysis of nutrient pathways leading to Atlantic salmon. Can J Fish Aquat Sci 53:2058–2066. doi:10.1139/cjfas-53-9-2058

    Article  Google Scholar 

  • Doucett RR, Hooper W, Power G (1999) Identification of anadromous and nonanadromous brook trout and their progeny in the Tabusintac River, New Brunswick, by means of multiple-stable-isotope analysis. Trans Am Fish Soc 128:278–288. doi:10.1577/1548-8659(1999)128<0278:IOAANA>2.0.CO;2

    Article  Google Scholar 

  • Erikson MS, Espmark AM, Poppe T, Braastad BO, Salte R, Bakken M (2006) Fluctuating asymmetry in farmed Atlantic salmon (Salmo salar) juveniles: also a maternal matter? Environ Biol Fish 81:87–99. doi:10.1007/s10641-006-9174-5

    Article  Google Scholar 

  • Finlay JC, Khandwala S, Power ME (2002) Spatial scales of carbon flow in a river food web. Ecology 83:1845–1859. doi:10.1890/0012-9658(2002)083[1845:SSOCFI]2.0.CO;2

    Article  Google Scholar 

  • Fish Farmer International (2007) 34 (5). May 2007

  • Fisher JP, Pearcy WG (1990) Spacing of scale circuli versus growth rate in young coho salmon. Fish Bul 88:637–643

    Google Scholar 

  • Fisher JP, Pearcy WG (2005) Seasonal changes in growth of coho salmon (Oncorhynchus kisutch) off Oregon and Washington and concurrent changes in the spacing of scale circuli. Fish Bul 103:34–51

    Google Scholar 

  • Francis RICC (1990) Back-calculation of fish length: a critical review. J Fish Biol 36:883–902

    Article  Google Scholar 

  • Friedland KD, Haas RE, Sheehan TF (1996) Post-smolt growth, maturation, and survival of two stocks of Atlantic salmon. Fish Bull 94:654–663

    Google Scholar 

  • Fukuwaka M, Kaeriyama M (1997) Scale analyses to estimate somatic growth in sockeye salmon, Oncorhynchus nerka. Can J Fish Aqua Sci 54:631–636. doi:10.1139/cjfas-54-3-631

    Article  Google Scholar 

  • Glova GJ, Sagar PM, Naslund I (1992) Interaction for food and space between populations of Galaxias vulgaris Stokell and Salmo trutta L. in a New Zealand stream. J Fish Biol 41:909–925. doi:10.1111/j.1095-8649.1992.tb02719.x

    Article  Google Scholar 

  • Gross MR (1998) One species with two biologies: Atlantic salmon (Salmo salar) in the wild and in aquaculture. Can J Fish Aquat Sci 55:131–144. doi:10.1139/cjfas-55-S1-131

    Article  Google Scholar 

  • Hansen LP, Jacobsen JA, Lund RA (1999) The incidence of escaped farmed Atlantic salmon, Salmo salar L., in the Faroese fishery and estimates of catches of wild salmon. ICES J Mar Sci 56:200–206. doi:10.1006/jmsc.1998.0437

    Article  Google Scholar 

  • Herzka SZ, Holt GJ (2000) Changes in isotopic composition of red drum (Sciaenops ocellatus) larvae in response to dietary shifts: potential applications to settlement studies. Can J Fish Aquat Sci 57:137–147. doi:10.1139/cjfas-57-1-137

    Article  Google Scholar 

  • Hesslein RH, Hallard KA, Ramlal P (1993) Replacement of sulfur, carbon and nitrogen in tissue of growing whitefish (Coregonus nasus) in response to a change in diet traced by d34S, d13C and d15 N. Can J Fish Aquat Sci 50:2071–2076

    Article  CAS  Google Scholar 

  • Hiilivirta P, Ikonen E, Lappalainen J (1998) Comparison of two methods for distinguishing wild from hatchery-reared salmon (Salmo salar Linnaeus 1758) in the Baltic Sea. ICES J Mar Sci 55:981–986. doi:10.1006/jmsc.1998.0370

    Article  Google Scholar 

  • Hubley PB, Amiro PG, Gibson AJF (2008) Changes in scale circulus spacings of an endangered Atlantic salmon Salmo salar population: evidence of a shift in marine migration? J Fish Biol 73:2321–2340. doi:10.1111/j.1095-8649.2008.02081.x

    Article  Google Scholar 

  • ISSG (2008) Invasive Species Specialist Group. www.issig.org/database/welcome/. Accessed 15 Jan 2009

  • Jardine TD, MacLatchy DL, Fairchild WL, Cunjak RA, Brown SB (2004) Rapid carbon turnover during growth of Atlantic salmon (Salmo salar) smolts in sea water, and evidence for reduced food consumption by growth-stunts. Hydrobiologia 527:63–75. doi:10.1023/B:HYDR.0000043182.56244.f6

    Article  Google Scholar 

  • Jardine TD, Cartwright DF, Dietrich JP, Cunjak RA (2005) Resource use by salmonids in riverine, lacustrine and marine environments: evidence from stable isotope analysis. Env Biol Fish 73:309–319. doi:10.1007/s10641-005-2259-8

    Article  Google Scholar 

  • Jardine TD, Chernoff E, Curry RA (2008) Maternal transfer of carbon and nitrogen to progeny of sea-run and resident brook trout (Salvelinus fontinalis). Can J Fish Aquat Sci 65:2201–2210. doi:10.1139/F08-132

    Article  CAS  Google Scholar 

  • Jennings S, Warr KJ, Mackinson S (2002) Use of size-based production and stable isotope analyses to predict trophic transfer efficiencies and predator-prey body mass ratios in food webs. Mar Ecol Prog Ser 240:11–20. doi:10.3354/meps240011

    Article  Google Scholar 

  • Kennedy BP, Chamberlain CP, Blum JD, Nislow KH, Folt CL (2005) Comparing naturally occurring stable isotopes of nitrogen, carbon, and strontium as markers for the rearing locations of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 62:48–57. doi:10.1139/F04-184

    Article  CAS  Google Scholar 

  • Kuparinen A, Garcia de Leaniz C, Consuegra S, Merilä J (2009) Growth history perspective on the decreasing age and size at maturation of exploited Atlantic salmon. Mar Ecol Prog Ser 376:245–252. doi:10.3354/meps07789

    Article  Google Scholar 

  • Lake JL, McKinney RA, Osterman FA, Pruell RJ, Kiddon J, Ryba SA, Libby AD (2001) Stable nitrogen isotopes as indicators of anthropogenic activities in small freshwater systems. Can J Fish Aquat Sci 58:870–878. doi:10.1139/cjfas-58-5-870

    Article  CAS  Google Scholar 

  • Lattuca ME, Battini MA, Macchi PJ (2008) Trophic interactions among native and introduced fishes in a northern Patagonian oligotrophic lake. J Fish Biol 72:1306–1320. doi:10.1111/j.1095-8649.2008.01796.x

    Article  Google Scholar 

  • Lund RA, Hansen LP (1991) Identification of wild and reared Atlantic salmon, Salmo salar L., using scale characters. Aqua Res 22:499–508. doi:10.1111/j.1365-2109.1991.tb00763.x

    Article  Google Scholar 

  • MacAvoy SE, Macko SA, Garman GC (2001) Isotopic turnover in aquatic predators: quantifying the exploitation of migratory prey. Can J Fish Aquat Sci 58:923–932. doi:10.1139/cjfas-58-5-923

    Article  CAS  Google Scholar 

  • McCarthy ID, Waldron S (2000) Identifying migratory Salmo trutta using carbon and nitrogen stable isotope ratios. Rap Com Mass Spec 14:1325–1331. doi:10.1002/1097-0231(20000815)14:15<1325:AID-RCM980>3.3.CO;2-1

    Article  CAS  Google Scholar 

  • McDonald DG, Milligan CL, McFarlane WJ, Croke S, Currie S, Hooke B, Angus RB, Tufts BL, Davidson K (1998) Condition and performance of juvenile Atlantic salmon (Salmo salar): effects of rearing practices on hatchery fish and comparison with wild fish. Can J Fish Aquat Sci 55:1208–1219. doi:10.1139/cjfas-55-5-1208

    Article  Google Scholar 

  • McDowall RM (2003) Impacts of introduced salmonids on native galaxiids in New Zealand upland streams: a new look at an old problem. Trans Am Fish Soc 132:229–238. doi:10.1577/1548-8659(2003)132<0229:IOISON>2.0.CO;2

    Article  Google Scholar 

  • McDowall RM (2006) Crying wolf, crying foul, or crying shame: alien salmonids and a biodiversity crisis in the southern cool-temperate galaxioid fishes? Rev Fish Biol Fish 16:233–422. doi:10.1007/s11160-006-9017-7

    Article  Google Scholar 

  • McDowall RM, Allibone RM, Chadderton WL (2001) Issues for the conservation and management of Falkland Islands freshwater fishes. Aqua Cons 11:473–486. doi:10.1002/aqc.499

    Article  Google Scholar 

  • McHugh P, Budy P, Thiede G, VanDyke E (2006) Trophic relationships of nonnative brown trout, Salmo trutta, and native Bonneville cutthroat trout, Oncorhynchus clarkii utah, in a northern Utah, USA river. Env Biol Fish 81:73–75. doi:10.1007/s10641-006-9171

    Google Scholar 

  • Molkentin J, Meisel H, Lehmann I, Rehbein H (2007) Identification of organically farmed Atlantic salmon by analysis of stable isotopes and fatty acids. Eur Food Res Tech 224:535–543. doi:10.1007/s00217-006-0314-0

    Article  CAS  Google Scholar 

  • Munakata A, Bjornsson BT, Jonsson E, Amano M, Ikuta K, Kitamura S, Kurokawa T, Aida K (2000) Post-release adaptation processes of hatchery-reared honmasu salmon parr. J Fish Biol 56:163–172. doi:10.1111/j.1095-8649.2008.02071.x

    Article  CAS  Google Scholar 

  • Newsome S, Martínez del Rio C, Phillips DL, Bearhop S (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436. doi:10.1890/060150.1

    Google Scholar 

  • Pascual MA, Ciancio JE (2007) Introduced anadromous salmonids in Patagonia: Risks, uses, and a conservation paradox. In: Bert TM (ed) Ecological and genetic implications of aquaculture activities. Springer, The Netherlands, pp 333–353. doi:10.1007/978-1-4020-6148-6-18

    Chapter  Google Scholar 

  • Penaluna BE, Arismendi I, Soto D (2009) Evidence of interactive segregation between introduced trout and native fishes in northern Patagonian rivers, Chile. Trans Am Fish Soc 138:839–845. doi:10.1577/T08-134.1

    Article  Google Scholar 

  • Perga M, Gerdeaux D (2005) ‘Are fish what they eat’ all year round? Oecologia 144:598–606. doi:10.1007/s00442-005-0069-5

    Article  CAS  PubMed  Google Scholar 

  • Perry RW, Bradford MJ, Grout JA (2003) Effects of disturbance on contribution of energy sources to growth of juvenile chinook salmon (Oncorhynchus tschawytscha) in boreal streams. Can J Fish Aquat Sci 60:390–400. doi:10.1139/f03-035

    Article  Google Scholar 

  • Poole WR, Webb JH, Matthews MA, Youngson AF (2000) Occurrence of canthaxanthin in Atlantic salmon, Salmo salar L., fry in Irish rivers as a indicator of escaped farmed salmon. Fish Mgmt Ecol 7:377–385. doi:10.1111/j.1365-2400.2000.00209.x

    Article  Google Scholar 

  • Post DM, Layman CA, Arrington DA, Takimoto G, Quattrochi J, Montaña CG (2007) Getting to the fat of the matter: models, methods, and assumptions for dealing with lipids in stable isotope analysis. Oecologia 152:179–189. doi:10.1007/s00442-006-0630-x

    Article  PubMed  Google Scholar 

  • Sægrov H, Hindar K, Kålås S, Lura H (1997) Escaped farmed Atlantic salmon replace the original salmon stock in the River Voss, western Norway. ICES J Mar Sci 54:1166–1172. doi:10.1016/S1054-3139(97)80023-9

    Google Scholar 

  • Satterfield SR, Finney BP (2002) Stable isotope analysis of Pacific salmon: insight into trophic status and oceanographic conditions over the last 30 years. Prog Ocean 53:231–246. doi:10.1016/S0079-6611(02)00032-0

    Article  Google Scholar 

  • Sepúlveda M, Farías F, Soto E (2009)Salmon escapes in Chile. Incidents, impacts, mitigation and prevention. Valdivia, Chile, WWF Chile. 52 pp

  • Skilbrei OT, Wennevik V (2006) The use of catch statistics to monitor the abundance of escaped farmed Atlantic salmon and rainbow trout in the sea. ICES J Mar Sci 63:1190–1200. doi:10.1016/j.icesjms.2006.05.005

    Article  Google Scholar 

  • Soto D, Jara HF, Moreno CA (2001) Escaped salmon in the Chiloé and Aysen inner seas, Southern Chile: facing ecological and social conflicts. Ecol Appl 11:1750–1762

    Article  Google Scholar 

  • Soto D, Arismendi I, Gonzalez J, Sanzana J, Jara F, Jara C (2006) Southern Chile, trout and salmon country: invasion patterns and threats for native species. Rev Chil Hist Nat 79:97–117. doi:10.4067/S0716-078X2006000100009

    Article  Google Scholar 

  • Stokesbury MJ, Lacroix GL (1997) High incidence of hatchery origin Atlantic salmon in the smolt output of a Canadian River. ICES J Mar Sci 54:1074–1081. doi:10.1016/S1054-3139(97)80011-2

    Google Scholar 

  • Stokesbury MJW, Lacroix GL, Price EL, Knox D, Dadswell MJ (2001) Identification by scale analysis of farmed Atlantic salmon juveniles in southwestern New Brunswick rivers. Trans Am Fish Soc 130:815–822. doi:10.1577/1548-8659(2001)130<0815:IBSAOF>2.0.CO;2

    Article  Google Scholar 

  • The Patagonia Times (2009) Thousands of salmon and trout escape in Southern Chile. Available online: http://www.patagoniatimes.cl/index.php/20090119726/News/Salmon-News/MASSIVE-SALMON-AND-TROUT-ESCAPE-IN-SOUTHERN-CHILE.html. Accessed 15 Sep 2009

  • Thorstad EB, Fleming IA, McGinnity P, Soto D, Wennevik V, Whoriskey FG (2008) Incidence and impacts of escaped farmed Atlantic salmon Salmo salar in nature. NINA Special Rep 36:1–110

    Google Scholar 

  • Unwin MJ, Lucas DH (1993) Scales characteristics of wild and hatchery chinook salmon (Oncorhynchus tshawytscha) in the Rakaia River, New Zealand, and their use in stock identification. Can J Fish Aquat Sci 50:2475–2484. doi:10.1139/f93-272

    Article  Google Scholar 

  • Vander Zanden MJ, Rasmussen JB (1999) Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80:1395–1404. doi:10.1890/0012-9658(1999)080[1395:PCCANA]2.0.CO;2

    Article  Google Scholar 

  • Vander Zanden MJ, Shuter BJ, Lester N, Rasmussen JB (1999) Patterns of food chain length in lakes: a stable isotope study. Am Nat 154:406–416. doi:10.1086/303250

    Article  PubMed  Google Scholar 

  • Wolf N, Carleton SA, Martínez del Rio C (2009) Ten years of experimental animal isotopic ecology. Func Ecol 23:17–26. doi:10.1111/j.1365-2435.2009.01529.x

    Article  Google Scholar 

  • Young KA, Stephenson J, Terreau A, Thailly AF, Gajardo G, Garcia de Leaniz C (2009) The diversity of juvenile salmonids does not affect their competitive impact on a native galaxiid. Biol Invas 11:1955–1961. doi:10.1007/s10530-008-9372-5

    Article  Google Scholar 

  • Young KA, Dunham JB, Stephenson JF, Terreau A, Thailly AF, Gajardo G, Garcia de Leaniz C (2010) A trial of two trouts: comparing the impacts of rainbow and brown trout on a native galaxiid. Anim Cons. doi: 10.1111/j.1469-1795.2010.00354.x

  • Youngson AF, Webb JH, MacLean JC, White BM (1997) Frequency of occurrence of reared Atlantic salmon in Scottish salmon fisheries. ICES J Mar Sci 54:1216–1220. doi:10.1016/S1054-3139(97)80028-8

    Article  Google Scholar 

Download references

Acknowledgments

We thank Kyle Young, Jane MacDonald, Paul Howes, Ben Perry, Gabriel Orellana and Jessica Stephenson for collecting the samples in Chile. Iain Robertson, Kath Ficken and Neil Loader provided assistance with isotopic analysis and Laura Roberts and Gethin Thomas helped with sample processing. We are also grateful to Alaric B. Smith, Sonia Consuegra, Gonzalo Gajardo, and an anonymous referee for useful comments on an earlier version of the manuscript. Funding for this study was provided by a DEFRA Darwin Initiative ‘Reducing the Impact of Exotic Aquaculture on Chilean Aquatic Biodiversity (Grant No. 162/15/020; www.biodiversity.cl) to CGL and GG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Garcia de Leaniz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schröder, V., Garcia de Leaniz, C. Discrimination between farmed and free-living invasive salmonids in Chilean Patagonia using stable isotope analysis. Biol Invasions 13, 203–213 (2011). https://doi.org/10.1007/s10530-010-9802-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-010-9802-z

Keywords

Navigation