Log in

The era of ‘omics’ technologies in the study of microbiologically influenced corrosion

  • Review Article
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Efforts to elucidate the relationships between microorganisms and metal corrosion were mainly directed to understanding the formation of biofilm structures grown on corroded surfaces. The emergence of high throughput DNA sequencing techniques has helped in the description of microbial species involved directly and indirectly in the corrosion processes of alloys. Coupled with sequencing from environmental samples, other methodologies such as metatranscriptome, metaproteomics and metabolomics have allowed a new horizon to be opened on the understanding of the role of corrosive microbial biofilm. Several groups of bacteria and archaea were identified, showing the dominance of Proteobacteria in several samples analyzed and members of groups that previously received less attention, such as Firmicutes and Bacteroidetes. Our research also shows that metagenomic studies describe the presence of various Archaea domain thermophilic and methanogenic groups associated with metal corrosion. Thus, opening the prospect of describing new microbial groups as possible participants in this current global concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • An D, Dong X, An A, Park HS, Strous M, Voordouw G (2016) Metagenomic analysis indicates Epsilonproteobacteria as a potential cause of microbial corrosion in pipelines injected with bisulfite. Front Microbiol 28:7–28

    Google Scholar 

  • Andrews S, Norton I, Salunkhe AS, Goodluck H, Aly WSM, Mourad-Agha H, Cornelis P (2013) Control of iron metabolism in bacteria. In: Banci L (ed) Metallomics and the cell. Springer, Switzerland, pp 203–239

    Google Scholar 

  • Baeckmann WV (1997) Handbook of cathodic corrosion protection. Elsevier, Amsterdam

    Google Scholar 

  • Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186

    CAS  PubMed  Google Scholar 

  • Beech IB, Sunner JA, Hiraoka K (2005) Microbe-surface interactions in biofouling and biocorrosion processes. Int Microbiol 8:157–168

    CAS  PubMed  Google Scholar 

  • Beech IB, Sztyler M, Gaylarde CC, Smith WL, Sunner J (2014) Biofilms and biocorrosion. In: Liengen T, Féron D, Basséguy R, Beech IB (eds) Understanding biocorrosion: fundamentals and applications. Elsevier, Amsterdam, pp 33–56

    Google Scholar 

  • Bell E, Lamminmäki T, Alneberg J, Andersson AF, Qian C, **ong W, Hettich RL, Balmer L, Frutschi M, Sommer G, Bernier-Latmani R (2018) Biogeochemical cycling by a low-diversity microbial community in deep groundwater. Front Microbiol 9:2129. https://doi.org/10.3389/fmicb.2018.02129

    Article  PubMed  PubMed Central  Google Scholar 

  • Bond DR, Holmes DE, Tender LM, Lovley DR (2002) Electrode-reducing microorganisms that harvest energy from marine sediments. Science 295:483–485

    CAS  PubMed  Google Scholar 

  • Bonifay V, Wawrik B, Sunner J, Snodgrass EC, Aydin E, Duncan KE, Callaghan AV, Oldham A, Liengen T, Beech I (2017) Metabolomic and metagenomic analysis of two crude oil production pipelines experiencing differential rates of corrosion. Front Microbiol 8:99. https://doi.org/10.3389/fmicb.2017.00099

    Article  PubMed  PubMed Central  Google Scholar 

  • Booker AE, Hoyt DW, Meulia T, Eder E, Nicora CD, Purvine SO, Daly RA, Moore JD, Wunch K, Pfiffner SM, Lipton MS, Mouser PJ, Wrighton KC, Wilkins MJ (2019) Deep-subsurface pressure stimulates metabolic plasticity in shale-colonizing Halanaerobium spp. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00018-19

    Article  PubMed  PubMed Central  Google Scholar 

  • Boopathy R, Daniels L (1991) Effect of pH on anaerobic mild steel corrosion by methanogenic bacteria. Appl Environ Microbiol 57:2104–2108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Booth GH, Tiller AK (1962) Polarization studies of mild steel in cultures of sulphate-reducing bacteria. Part 2. Thermophilic organisms. Transact Faraday Soc 58:110–115

    Google Scholar 

  • Brum JR, Culley AI, Steward GF (2013) Assembly of a marine viral metagenome after physical fractionation. PLoS ONE 8(4):e60604. https://doi.org/10.1371/journal.pone.0060604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Certini G, Campbell CCD, Edwards AC (2004) Rock fragments in soil support a different microbial community from the fine earth. Soil Biol Biochem 36:1119–1128

    CAS  Google Scholar 

  • Chao A (1983) Non-parametric estimation of the classes in a population. Scand J Stat 11:265–270. https://doi.org/10.2307/4615964

    Article  Google Scholar 

  • Chazdon RL (1998) A tropical rain forest feast. Trends Ecol Evol 13:421–422

    CAS  PubMed  Google Scholar 

  • Cord-Ruwisch R, Widdel F (1986) Corroding iron as a hydrogen source for sulfate reduction in growing cultures of sulfate-reducing bacteria. Appl Microbiol Biotechnol 25:169–174

    CAS  Google Scholar 

  • Costello JA (1974) Cathodic depolarization by sulphate-reducing bacteria. S Afr J Sci 70:202–204

    CAS  Google Scholar 

  • Dang H, Chen R, Wang L, Shao S, Dai L, Ye Y, Guo L, Huang G, Klotz M (2011) Molecular characterization of putative biocorroding microbiota with a novel niche detection of Epsilon- and Zetaproteobacteria in Pacific Ocean coastal seawaters. Environ Microbiol 13:3059–3074

    CAS  PubMed  Google Scholar 

  • Daniels L, Belay N, Rajagopal BS, Weimer PJ (1987) bacterial methanogenesis and growth from CO2 with elemental iron as the sole source of electrons. Science 237:509–511

    CAS  PubMed  Google Scholar 

  • Dinh HT, Kuever J, Mussmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427:829–832

    CAS  PubMed  Google Scholar 

  • Dobzhansky T, Mayr E (1944) Experiments on sexual isolation in Drosophila: I. Geographic strains of Drosophila willistoni. Proc Natl Acad Sci USA 30:238–344

    CAS  PubMed  Google Scholar 

  • Dong Y, Jiang B, Xu D, Jiang C, Li Q, Gu T (2018) Severe microbiologically influenced corrosion of S32654 super austenitic stainless steel by acid producing bacterium Acidithiobacillus caldus SM-1. Bioelectrochemistry 123:34–44

    CAS  PubMed  Google Scholar 

  • Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, Peluso P, Rank D et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138. https://doi.org/10.1126/science.1162986

    Article  CAS  PubMed  Google Scholar 

  • Emerson D (2018) The role of iron-oxidizing bacteria in biocorrosion: a review. Biofouling 34:989–1000. https://doi.org/10.1080/08927014.2018.1526281

    Article  CAS  PubMed  Google Scholar 

  • Emerson D, Moyer C (1997) Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl Environ Microbiol 63:4784–4792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Emerson D, Rentz JA, Lilburn TG, Davis RE, Aldrich H, Chan C, Moyer CL, Reysenbach A-L (2007) A novel lineage of proteobacteria involved in formation of marine Fe-oxidizing microbial mat communities. PLoS ONE 2(8):e667

    PubMed  PubMed Central  Google Scholar 

  • Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80:1226–1236

    PubMed  PubMed Central  Google Scholar 

  • Enning D, Venzlaff H, Garrelfs J, Dinh HT, Meyer V, Mayrhofer K et al (2012) Marine sulfate-reducing bacteria cause serious corrosion of iron under electroconductive biogenic mineral crust. Environ Microbiol 14:1772–1787

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–512

    CAS  PubMed  Google Scholar 

  • Gaines HA (1910) Bacterial activity as a corrosion induced in the soil. J Eng Ind Chem 2:128–130

    Google Scholar 

  • Geesey GG, Beech I, Bremmer PJ, Webster BJ, Wells D (2000) Biocorrosion. In: Bryers JD (ed) Biofilms II: process analysis and applications, Wiley-Liss, Hoboken pp 281–326

    Google Scholar 

  • Ghiorse WC (1984) Biology of iron- and manganese-depositing bacteria. Annu Rev Microbiol 38:515–550

    CAS  PubMed  Google Scholar 

  • Giannoukos G, Ciulla DM, Huang K, Haas BJ, Izard J, Levin JZ, Livny J, Earl AM, Gevers D, Ward DV, Nusbaum C, Birren BW, Gnirke A (2012) Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biol 13:R23. https://doi.org/10.1186/gb-2012-13-3-r23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greninger AL, Naccache SN, Federman S, Yu G, Mbala P, Bres V, Stryke D, Bouquet J, Somasekar S, Linnen JM, Dodd R, Mulembakani P, Schneider BS, Muyembe-Tamfum JJ, Stramer SL, Chiu CY (2015) Rapid metagenomic identification of viral pathogens in clinical samples by real-time nanopore sequencing analysis. Genome Med 7:99. https://doi.org/10.1186/s13073-015-0220-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gutleben J, Chaib De Mares M, van Elsas JD, Smidt H, Overmann J, Sipkema D (2018) The multi-omics promise in context: from sequence to microbial isolate. Crit Rev Microbiol 44:212–229. https://doi.org/10.1080/1040841X.2017.1332003

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WA (2003) Microbially influenced corrosion as a model system for the study of metal microbe interactions: a unifying electron transfer hypothesis. Biofouling 19:65–76

    CAS  PubMed  Google Scholar 

  • Harris TD, Buzby PR, Babcock H, Beer E, Bowers J, Braslavsky I, Causey M, Colonell J, Dimeo J, Efcavitch JW, Giladi E, Gill J, Healy J, Jarosz M, Lapen D, Moulton K, Quake SR, Steinmann K, Thayer E, Tyurina A, Ward R, Weiss H, **e Z (2008) Single-molecule DNA sequencing of a viral genome. Science 320:106–109. https://doi.org/10.1126/science.1150427

    Article  CAS  PubMed  Google Scholar 

  • Hennig BP, Velten L, Racke I, Tu CS, Thoms M, Rybin V, Besir H, Remans K, Steinmetz LM (2018) Scale low-cost NGS library preparation using a robust Tn5 purification and tagmentation protocol. G3 (Bethesda) 8:79–89. https://doi.org/10.1534/g3.117.300257

    Article  CAS  Google Scholar 

  • Hugerth LW, Andersson AF (2017) Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. Front Microbiol 8:1561. https://doi.org/10.3389/fmicb.2017.01561

    Article  PubMed  PubMed Central  Google Scholar 

  • Iino T, Ito K, Wakai S, Tsurumaru H, Ohkuma M, Harayama S (2015) Iron corrosion induced by nonhydrogenotrophic nitrate-reducing Prolixibacter sp. strain MIC1-1. Appl Environ Microbiol 81:1839–1846. https://doi.org/10.1128/AEM.03741-14

    Article  PubMed  PubMed Central  Google Scholar 

  • Iverson WP (1966) Direct evidence for the cathodic depolarization theory of bacterial corrosion. Science 151:986–988

    CAS  PubMed  Google Scholar 

  • Iverson WP (1987) Microbial corrosion of metals. Adv Appl Microbiol 32:1–36

    CAS  Google Scholar 

  • Kaesche H (2003) Corrosion of metals: physicochemical principles and current problems, 1st edn. Springer, Berlin, GM

    Google Scholar 

  • Kappler A, Newman D (2004) Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria. Geochim Cosmochim Acta 68:1217–1226. https://doi.org/10.1016/j.gca.2003.09.006

    Article  CAS  Google Scholar 

  • Kato S, Yumoto I, Kamagata Y (2015) Isolation of acetogenic bacteria that induce biocorrosion by utilizing metallic iron as the sole electron donor. Appl Environ Microbiol 81:67–73. https://doi.org/10.1128/AEM.02767-14

    Article  CAS  PubMed  Google Scholar 

  • Kip N, Jansen S, Leite MFA, de Hollander M, Afanasyev M, Kuramae EE, Van Veen JA (2017) Methanogens predominate in natural corrosion protective layers on metal sheet piles. Sci Rep 7(1)

  • Koch GH, Brongers MPH, Thompson NG, Virmani YP, Payer JH (2002) Corrosion cost and preventive strategies in the United States. Federal Highway Administration, Washington, D.C., pp 1–12

    Google Scholar 

  • Kojima T, Takei Y, Ohtsuka M, Kawarasaki Y, Yamane T, Nakano H (2005) PCR amplification from single DNA molecules on magnetic beads in emulsion: application for high-throughput screening of transcription factor targets. Nucleic Acids Res 33:e150

    PubMed  PubMed Central  Google Scholar 

  • Larsen J, Kim J R, Rasmussen, Pedersen HS, Sørensen KB, Lundgaard T, Skovhus TL (2010) Consortia of mic bacteria and archaea causing pitting corrosion in top side oil production facilities. NACE—International Corrosion Conference Series, pp 14–18.

  • Lenhart TR, Duncan KE, Beech IB, Sunner JA, Smith W, Bonifay V, Biri B, Suflita JM (2014) Identification and characterization of microbial biofilm communities associated with corroded oil pipeline surfaces. Biofouling 30:823–835

    PubMed  Google Scholar 

  • Li X, Duan J, **ao H, Li Y, Liu H, Guan F, Zhai X (2017) Analysis of bacterial community composition of corroded steel immersed in Sanya and **amen seawaters in China via method of illumina MiSeq sequencing. Front Microbiol 8:1737. https://doi.org/10.3389/fmicb.2017.01737

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Tang K, Zhang L, Zhao Z, **e X, Chen CA, Wang D, Jiao N, Zhang Y (2018a) Coupled carbon, sulfur, and nitrogen cycles mediated by microorganisms in the water column of a shallow-water hydrothermal ecosystem. Front Microbiol 9:2718. https://doi.org/10.3389/fmicb.2018.02718

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Xu D, Chena C, Li X, Jia R, Zhang D, Sand W, Wang F, Gu T (2018b) Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review. J Mater Sci Technol 34:1713–1718. https://doi.org/10.1016/j.jmst.2018.02.023

    Article  Google Scholar 

  • Little B, Lee JS (2007) Microbiologically influenced corrosion, 1st edn. Wiley-Interscienc, New York

    Google Scholar 

  • Little B, Wagner P, Mansfeld F (1992) An overview of microbiologically influenced corrosion. Electrochim Acta 37:2185–2194

    CAS  Google Scholar 

  • Liu L, Li Y, Li S, Hu N, He Y, Pong R, Lin D, Lu L, Law M (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364. https://doi.org/10.1155/2012/251364

    Article  PubMed  PubMed Central  Google Scholar 

  • Loman NJ, Constantinidou C, Chan JZ, Halachev M, Sergeant M, Penn CW, Robinson ER, Pallen MJ (2012) High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 10:599–606

    CAS  PubMed  Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol Rev 55:259–287

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lugauskas A, Prosyčevas I, Ramanauskas R, Grigucevičienė A, Selskienė A, Pakštas V (2009) The influence of micromycetes on the corrosion behaviour of metals (steel, al) under conditions of the environment polluted with organic substances. Mat Sci 15:224–235

    Google Scholar 

  • Mand J, Park HS, Jack TR, Voordouw G (2014) The role of acetogens in microbially influenced corrosion of steel. Front Microbiol 5:268

    PubMed  PubMed Central  Google Scholar 

  • McBeth JM, Emerson D (2016) In situ microbial community succession on mild steel in estuarine and marine environments: exploring the role of iron-oxidizing bacteria. Front Microbiol 7:767. https://doi.org/10.3389/fmicb.2016.00767

    Article  PubMed  PubMed Central  Google Scholar 

  • Metzker ML (2005) Emerging technologies in DNA sequencing. Genome Res 15:1767–1776

    CAS  PubMed  Google Scholar 

  • Mori K, Tsurumaru H, Harayama S (2010) Iron corrosion activity of anaerobic hydrogen-consuming microorganisms isolated from oil facilities. J Biosci Bioeng 110:426–430

    CAS  PubMed  Google Scholar 

  • Mosier AC, Li Z, Thomas BC, Hettich RL, Pan C, Banfield JF (2015) Elevated temperature alters proteomic responses of individual organisms within a biofilm community. ISME J 9:180–194. https://doi.org/10.1038/ismej.2014.113

    Article  CAS  PubMed  Google Scholar 

  • Moura V, Ribeiro I, Moriggi P, Capão A, Salles C, Bitati S, Procópio L (2018) The influence of surface microbial diversity and succession on microbiologically influenced corrosion of steel in a simulated marine environment. Arch Microbiol 10:1447–1456. https://doi.org/10.1007/s00203-018-1559-2

    Article  CAS  Google Scholar 

  • Pak KR, Lee HJ, Lee HK, Kim YK, Oh YS, Choi SC (2003) Involvement of organic acid during corrosion of iron coupon by Desulfovibrio desulfuricans. J Microbiol Biotechnol 13:937–941

    CAS  Google Scholar 

  • Park HS, Chatterjee I, Dong X, Wang SH, Sensen CW, Caffrey SM, Jack TR, Boivin J, Voordouw G (2011) Effect of sodium bisulfite injection on the microbial community composition in a brackish-water-transporting pipeline. Appl Environ Microbiol 77:6908–6917. https://doi.org/10.1128/AEM.05891-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peccia J, Marchand EA, Silverstein J, Hernandez M (2000) Development and application of small-subunit rRNA probes for assessment of selected Thiobacillus species and members of the genus Acidiphilium. Appl Environ Microbiol 66:3065–3072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Price SJ, Figueira RB (2017) Corrosion protection systems and fatigue corrosion in offshore wind structures: current status and future perspectives. Coatings 7:1–51. https://doi.org/10.3390/coatings7020025

    Article  CAS  Google Scholar 

  • Procópio L (2019) The role of biofilms in the corrosion of steel in marine environments. World J Microbiol Biotechnol 35:73. https://doi.org/10.1007/s11274-019-2647-4

    Article  CAS  PubMed  Google Scholar 

  • Rajala P, Carpén L, Vepsäläinen M, Raulio M, Sohlberg E, Bomberg M (2015) Microbially induced corrosion of carbon steel in deep groundwater environment. Front Microbiol 6:647. https://doi.org/10.3389/fmicb.2015.00647

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajasekar A, Anandkumar B, Maruthamuthu S, Ting YP, Rahman PK (2010) Characterization of corrosive bacterial consortia isolated from petroleum-product-transporting pipelines. Appl Microbiol Biotechnol 85:1175–1188. https://doi.org/10.1007/s00253-009-2289-9

    Article  CAS  PubMed  Google Scholar 

  • Ramírez GA, Hoffman CL, Lee MD, Lesniewski RA, Barco RA, Garber A, Toner BM, Wheat CG, Edwards KJ, Orcutt BN (2016) Assessing marine microbial induced corrosion at Santa Catalina Island, California. Front Microbiol 7:1679

    PubMed  PubMed Central  Google Scholar 

  • Ray RI, Lee JS, Little BJ (2010) Iron-oxidizing bacteria: a review of corrosion mechanisms in fresh water and marine environments. NACE Corrosion 2010 Conference, p 1–19.

  • Reuter JA, Spacek DV, Snyder MP (2015) High-throughput sequencing technologies. Mol Cell 58:586–597. https://doi.org/10.1016/j.molcel.2015.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revie RW (2011) Uhlig's corrosion handbook, 3rd edn. Wiley-Interscienc, New Jersey

    Google Scholar 

  • Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM (2000) Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol 66:2541–2547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rothberg JM, Hinz W, Rearick TM, Schultz J, Mileski W, Davey M, Leamon JH, Johnson K, Milgrew MJ, Edwards M, Hoon J, Simons JF, Marran D, Myers JW, Davidson JF, Branting A, Nobile JR, Puc BP, Light D, Clark TA, Huber M, Branciforte JT, Stoner IB, Cawley SE, Lyons M, Fu Y, Homer N, Sedova M, Miao X, Reed B, Sabina J, Feierstein E, Schorn M, Alanjary M, Dimalanta E, Dressman D, Kasinskas R, Sokolsky T, Fidanza JA, Namsaraev E, McKernan KJ, Williams A, Roth GT, Bustillo J (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348–352. https://doi.org/10.1038/nature10242

    Article  CAS  PubMed  Google Scholar 

  • Ruehland C, Dubilier N (2010) Gamma- and epsilonproteobacterial ectosymbionts of a shallow-water marine worm are related to deep-sea hydrothermal vent ectosymbionts. Environ Microbiol 2:2312–2326

    Google Scholar 

  • Shannon CE, Weaver W (1963) The mathematical theory of commuication. University of Illinois Press

  • Shao K, Ding W, Wang F, Li H, Ma D, Wang H (2011) Emulsion PCR: a high efficient way of PCR amplification of random DNA libraries in aptamer selection. PLoS ONE 6:e24910. https://doi.org/10.1371/journal.pone.0024910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stöhr R, Waberski A, Liesack W, Völker H, Wehmeyer U, Thomm M (2001) Hydrogenophilus hirschii sp. nov., a novel thermophilic hydrogen-oxidizing beta-proteobacterium isolated from Yellowstone National Park. Int J Syst Evol Microbiol 51:481–488

    PubMed  Google Scholar 

  • Suflita JM, Phelps TJ, Little B (2008) Carbon dioxide corrosion and acetate: a hypothesis on the influence of microorganisms. Corros Sci 64:854–859. https://doi.org/10.5006/1.3279919

    Article  CAS  Google Scholar 

  • Tebo BM, Ghiorse WC, Van Waasbergen LG, Siering PL, Caspi R (1997) Bacterially mediated mineral formation: insights into manganese(h) oxidation from molecular genetic and biochemical studies. Rev Miner 35:259–266

    Google Scholar 

  • Thompson JF, Steinmann KE (2010) Single molecule sequencing with a HeliScope genetic analysis system. Curr Protoc Mol Biol 92(7):10

    Google Scholar 

  • Thomson LK, Fleming SD, Barone K, Zieschang JA, Clark AM (2010) The effect of repeated freezing and thawing on human sperm DNA fragmentation. Fertil Steril 93:1147–1156. https://doi.org/10.1016/j.fertnstert.2008.11.023

    Article  CAS  PubMed  Google Scholar 

  • Todorova T, Pesheva M, Stamenova R, Dimitrov M, Venkov P (2012) Mutagenic effect of freezing on nuclear DNA of Saccharomyces cerevisiae. Yeast 29:191–199. https://doi.org/10.1002/yea.2901

    Article  CAS  PubMed  Google Scholar 

  • Turnbaugh PJ, Gordon JI (2008) An invitation to the marriage of metagenomics and metabolomics. Cell 134:708–713. https://doi.org/10.1016/j.cell.2008.08.025

    Article  CAS  PubMed  Google Scholar 

  • Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428:37–43

    CAS  PubMed  Google Scholar 

  • Uchiyama T, Ito K, Mori K, Tsurumaru H, Harayama S (2010) Iron-corroding methanogen isolated from a crude-oil storage tank. Appl Environ Microbiol 76(6):1783–1788. https://doi.org/10.1128/AEM.00668-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usher KM, Kaksonena AH, MacLeod ID (2014) Marine rust tubercles harbour iron corroding archaea and sulphate reducing bacteria. Corros Sci 83:189–197

    CAS  Google Scholar 

  • Videla HA (1996) Manual of biocorrosion, 1st edn. Lewis Publishers, Florida

    Google Scholar 

  • Videla HA, Herrera LK (2005) Microbiologically influenced corrosion: looking to the future. Int Microbiol 3:169–180

    Google Scholar 

  • Vigneron A, Alsop EB, Chambers B, Lomans BP, Head IM, Tsesmetzis N (2016) Complementary microorganisms in highly corrosive biofilms from an offshore oil production facility. Appl Environ Microbiol 82:2545–2554. https://doi.org/10.1128/AEM.03842-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigneron A, Head IM, Tsesmetzis N (2018) Damage to offshore production facilities by corrosive microbial biofilms. Appl Microbiol Biotechnol 102:2525–2533. https://doi.org/10.1007/s00253-018-8808-9

    Article  CAS  PubMed  Google Scholar 

  • von Wolzogen Kuhr CAH, van der Vlugt LS (1964) The graphitization of cast iron as an electrobiochemical process in anaerobic soils. Water 18:147–165

    Google Scholar 

  • Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–225

    Google Scholar 

  • Xu D, Li Y, Gu T (2016) Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry 110:52–58. https://doi.org/10.1016/j.bioelechem.2016.03.003

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Pei G, Chen L, Zhang W (2016) Metabolic dynamics of Desulfovibrio vulgaris biofilm grown on a steel surface. Biofouling 32:725–736. https://doi.org/10.1080/08927014.2016.1193166

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Procópio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Procópio, L. The era of ‘omics’ technologies in the study of microbiologically influenced corrosion. Biotechnol Lett 42, 341–356 (2020). https://doi.org/10.1007/s10529-019-02789-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-019-02789-w

Keywords

Navigation