Log in

Butanol production from lignocellulosics

  • REVIEW
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Clostridium spp. produce n-butanol in the acetone/butanol/ethanol process. For sustainable industrial scale butanol production, a number of obstacles need to be addressed including choice of feedstock, the low product yield, toxicity to production strain, multiple-end products and downstream processing of alcohol mixtures. This review describes the use of lignocellulosic feedstocks, bioprocess and metabolic engineering, downstream processing and catalytic refining of n-butanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adhami L, Griggs B, Himebrook P, Taconi K (2009) Liquid–liquid extraction of butanol from dilute aqueous solutions using soybean-derived biodiesel. J Am Oil Chem Soc 86:1123–1128

    Article  CAS  Google Scholar 

  • Alriksson B (2006) Ethanol from lignocellulose. Karlstad University, Karlstad Licentiate Thesis

    Google Scholar 

  • Al-Sahhaf TA, Kapetanovic E (1997) Salt effects of lithium chloride, sodium bromide, or potassium iodide on liquid–liquid equilibrium in the system water + 1-butanol. J Chem Eng Data 42(1):74–77

    Article  CAS  Google Scholar 

  • Annous BA, Blaschek HP (1991) Isolation and characterization of Clostridium acetobutylicum mutants with enhanced amylolytic activity. Appl Environ Microbiol 57:2544–2548

    PubMed  CAS  Google Scholar 

  • Aoki Y, Moriyoshi T (1978) Mutual solubility of n-butanol + water under high pressures. J Chem Thermodyn 10:1173–1184

    Article  CAS  Google Scholar 

  • Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP, Chou KJY, Hanai T, Liao JC (2008a) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311

    Article  PubMed  CAS  Google Scholar 

  • Atsumi S, Hanai T, Liao JC (2008b) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451:86–90

    Article  PubMed  CAS  Google Scholar 

  • Atsumi S, Wu TY, Eckl EM, Hawkins SD, Buelter T, Liao JC (2010) Engineering the isobutanol biosynthetic pathway in Escherichia coli by comparison of three aldehyde reductase/alcohol dehydrogenase genes. Appl Microbiol Biotechnol 85:651–657

    Article  PubMed  CAS  Google Scholar 

  • Bankar SB, Survase SA, Singhal RS, Granström T (2012) Continuous two stage acetone–butanol–ethanol fermentation with integrated solvent removal using Clostridium acetobutylicum B5313. Bioresour Technol Bioresour Technol 106:110–116

    Article  CAS  Google Scholar 

  • Berezina OV, Zakharova NV, Brandt A, Yarotsky SV, Schwarz WH, Zverlov VV (2010) Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 87:635–646

    Article  PubMed  CAS  Google Scholar 

  • Berteau P, Delmon B (1989) Modified aluminas: relationship between activity in 1-butanol dehydration and acidity measured by NH3 TPD. Catal Today 5:121–137

    Article  CAS  Google Scholar 

  • Berteau P, Ruwet M, Delmon B (1985) Reaction pathways in 1-butanol dehydration alumina. B Soc Chim Belg 94:859–868

    Article  CAS  Google Scholar 

  • Bimbela F, Oliva M, Ruiz J, García L, Arauzo J (2009) Catalytic steam reforming of model compounds of biomass pyrolysis liquids. J Anal Appl Pyrolysis 85:204–213

    Article  CAS  Google Scholar 

  • Black N (1991) ASAM alkaline sulfite pul** process shows potential for large-scale application. Tappi 87–93

  • Bozell JJ (2010) An evolution from pretreatment to fractionation will enable successful development of the integrated biorefinery. BioResources 5(3):1326–1327

    CAS  Google Scholar 

  • Cann AF, Liao JC (2008) Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl Microbiol Biotechnol 81:89–98

    Google Scholar 

  • Connor MR, Liao JC (2008) Engineering of an Escherichia coli strain for the production of 3-methyl-1-butanol. Appl Environ Microbiol 74:5769–5775

    Article  PubMed  CAS  Google Scholar 

  • D’Amore MB, Manzer LE, Miller ES, Knapp JP (2006) Process for making isooctenes from aqueous 2-butanol. Patent application USPC Class: 568671, USA

  • Davis IJ, Carter G, Young M, Minton NP (2005) Gene cloning in clostridia. In: Dürre P (ed) Handbook on clostridia. Taylor & Francis-CRC Press, New York, pp 37–52

  • Dellomonaco C, Clomburg JM, Miller EN, Gonzalez R (2011) Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476(7360):355–359. doi:10.1038/nature10333

    Google Scholar 

  • Domokos L (1973) Skeletal isomerization of n-butene over medium pore zeolites. PhD thesis, University of Twente, Enschede

  • Dürre P (1998) New insights and novel developments in clostridial acetone/isopropanol fermentation. Appl Microbiol Biotechnol 49:639–648

    Article  Google Scholar 

  • Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534

    Article  PubMed  CAS  Google Scholar 

  • Dürre P (2011) Fermentative production of butanol—the academic perspective. Curr Opin Biotechnol 22(3):331–336

    Article  PubMed  CAS  Google Scholar 

  • Eckert G, Schugerl K (1987) Continuous acetone–butanol production with direct product removal. Appl Microbiol Biotechnol 27:221–228

    Article  CAS  Google Scholar 

  • Efremenko EN, Stepanov NA, Nikolskaya AB, Senko OV, Spiricheva OV, Varfolomeev SD (2011) Biocatalysts based on immobilized cells of microorganisms in the production of bioethanol and biobutanol. Catal Ind 3(1):41–46

    Article  Google Scholar 

  • Elander RT, Dale BE, Holtzapple M, Ladisch MR, Lee YY, Mitchinson C, Saddler JN, Wyman CE (2009) Summary of findings from the biomass refining consortium for applied fundamentals and innovation (CAFI): corn stover pretreatment. Cellulose 16(4):649–659

    Article  CAS  Google Scholar 

  • Evans PJ, Wang HY (1988) Enhancement of butanol formation by Clostridium acetobutylicum in the presence of decanol–oleyl alcohol mixed extractants. Appl Environ Microbiol 54(7):1662–1667

    PubMed  CAS  Google Scholar 

  • Ezeji TC, Blaschek HP (2008) Fermentation of dried distillers’ grains and soluble (DDGS) hydrolysates to solvents and value-added products by solventogenic clostridia. Bioresour Technol 99:5232–5242

    Article  PubMed  CAS  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2004a) Acetone butanol ethanol (ABE) production from concentrated substrate: reduction in substrate inhibition by fed-batch technique and product inhibition by gas strip**. Appl Microbiol Biotechnol 63:653–658

    Article  PubMed  CAS  Google Scholar 

  • Ezeji TC, Qureshi N, Blaschek HP (2004b) Butanol fermentation research: upstream and downstream manipulations. Chem Rec 4:305–314

    Article  PubMed  CAS  Google Scholar 

  • Ezeji T, Qureshi N, Blaschek HP (2007) Production of acetone–butanol–ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii. Process Biochem 42:34–39

    Article  CAS  Google Scholar 

  • Fengel D, Wegener G (1989) Wood—chemistry, ultrastructure, reactions. Walter de Gruyter, Berlin

  • Fond O, Engasser JM, Matta-El-Amouri G, Petitdemange H (1986) The acetone butanol fermentation on glucose and xylose. II: regulation and kinetics in batch cultures. Biotechnol Bioeng 28:160–166

    Article  PubMed  CAS  Google Scholar 

  • Formanek J, Mackie R, Blaschek HP (1997) Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Appl Environ Microbiol 63:2306–2310

    PubMed  CAS  Google Scholar 

  • Fortman JL, Chhabra S, Mukhopadhyay A, Chou H, Lee TS, Steen E, Keasling JD (2008) Biofuel alternatives to ethanol: pum** the microbial well. Trends Biotechnol 26(7):375–381

    Article  PubMed  CAS  Google Scholar 

  • Fouad EA, Feng X (2008) Use of pervaporation to separate butanol from dilute aqueous solutions: effects of operating conditions and concentration polarization. J Membrane Sci 323:428–435

    Article  CAS  Google Scholar 

  • Galbe M, Zacchi G (2002) A review of the production of ethanol from softwood. Appl Microbiol Biotechnol 59(6):618–628

    Google Scholar 

  • Grobben NG, Eggink G, Cuperus FP, Huizing HJ (1993) Production of acetone, butanol and ethanol (ABE) from potato wastes: fermentation with integrated membrane extraction. Appl Microbiol Biotechnol 39:494–498

    Article  CAS  Google Scholar 

  • Groot WJ, Soedjak HS, Donck PB, Van der Lans RGJM, Luyben KCAM, Timmer JMK (1990) Butanol recovery from fermentations by liquid–liquid-extraction and membrane solvent-extraction. Bioprocess Eng 5(5):203–216

    Article  CAS  Google Scholar 

  • Gulevich AY, Skorokhodova AY, Sukhozhenko AV, Shakulov RS, Debabov VG (2011) Metabolic engineering of Escherichia coli for 1-butanol biosynthesis through the inverted aerobic fatty acid β-oxidation pathway. Biotechnol Lett. doi:10.1007/s10529-011-0797-z

    PubMed  Google Scholar 

  • Harris LM, Desai RP, Welker NE, Papoutsakis ET (2000) Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: Need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnol Bioeng 67:1–11

    Article  PubMed  CAS  Google Scholar 

  • Harris LM, Blank L, Desai RP, Welker NE, Papoutsakis ET (2001) Fermentation characterization and flux analysis of recombinant strains of Clostridium acetobutylicum with an inactivated solR gene. J Ind Microbiol Biotechnol 27:322–328

    Article  PubMed  CAS  Google Scholar 

  • Harris LM, Welker NE, Papoutsakis ET (2002) Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol 184:3586–3697

    Article  PubMed  CAS  Google Scholar 

  • Heap JT, Kuehne SA, Ehsaan M, Cartman ST, Cooksley CM, Scott JC, Minton NP (2010) The ClosTron: mutagenesis in clostridium refined and streamlined. J Microbiol Methods 80:49–55

    Article  PubMed  CAS  Google Scholar 

  • Heap JT, Ehsaan M, Cooksley CM, Ng Y-K, Cartman ST, Winzer K, Minton NP (2012) Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res. doi:10.1093/nar/gkr1321

    PubMed  Google Scholar 

  • Hillmann F, Fischer R-J, Saint-Prix F, Girbal L, Bahl H (2008) PerR acts as a switch for oxygen tolerance in the strict anaerobe Clostridium acetobutylicum. Mol Microbiol 68:848–860

    Article  PubMed  CAS  Google Scholar 

  • Hipolito CN, Crabbe E, Badillo CM, Zarrabal OC, Mora MAM, Flores GP, Cortazar M de AH, Ishizaki A (2008) Bioconversion of industrial wastewater from palm oil processing to butanol by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564). J Cleaner Prod 16:632–638

  • Horváth IS, Sjöde A, Alriksson B, Jönsson LJ, Nilvebrant NO (2005) Critical conditions for improved fermentability during overliming of acid hydrolysates from spruce. Appl Biochem Biotechnol 121–124:1031–1044

    Article  PubMed  Google Scholar 

  • Hu X, Lu G (2009) Investigation of the effects of molecular structure on oxygenated hydrocarbon steam re-forming. Energy Fuel 23:926–933

    Article  CAS  Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry catalysts and engineering. Chem Rev 106(9):4044–4096

    Article  PubMed  CAS  Google Scholar 

  • Iakovlev M (2011) SO2/ethanol/water fractionation of lignocellulosics. PhD Thesis, Aalto University, Espoo

  • Iakovlev M, van Heiningen A (2011) SO2/ethanol/water (SEW) pul**: I. Lignin determination in pulps and liquors. J Wood Chem Technol 31(3):233–249

    Article  CAS  Google Scholar 

  • Iakovlev M, Pääkkönen T, van Heiningen A (2009) Kinetics of SO2/ethanol/water pul** of spruce. Holzforschung 63(6):779–784

    Article  CAS  Google Scholar 

  • Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H (2008) Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Appl Microbiol Biotechnol 77:1305–1316

    Article  PubMed  CAS  Google Scholar 

  • ** C, Yaoc M, Liuc H, Lee C-F, Ji J (2011) Progress in the production and application of n-butanol as a biofuel. Renew Sustain Energy Rev 15:4080–4106

    Article  CAS  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone–butanol fermentation revisited. Microbiol Rev 50:484–524

    PubMed  CAS  Google Scholar 

  • Jones JW, Paredes CJ, Tracy B, Cheng N, Sillers R, Senger RS, Papoutsakis ET (2008) The transcriptional program underlying the physiology of clostridial sporulation. Genome Biol 9:R114. doi:10.1186/gb-2008-9-7-r114

    Article  PubMed  CAS  Google Scholar 

  • Jurgens G, Granström TB, van Heiningen A (2010) Cloning and expression of primary-secondary alcohol dehydrogenase gene from Clostridium beijerinckii as a part of the project of producing biofuels from forest biomass. Poster at Clostridium 11 conference, San Diego

  • Karinen RS, Linnekoski JA, Krause AOI (2001) Etherification of C-5- and C-8-alkenes with C-1- to C-4-alcohols. Catal Lett 76(1–2):81–87

    Article  CAS  Google Scholar 

  • Knoshaug EP, Zhang M (2009) Butanol tolerance in a selection of microorganisms. Appl Biochem Biotechnol 153:13–20

    Article  PubMed  CAS  Google Scholar 

  • Krause OA, Keskinen KI (2008) Etherification. In: Ertl G, Knötzinger H, Schut F, Weitkamp J (eds) Handbook of heterogenous catalysis, 2nd edn. Wiley, New York, pp 2864–2881

    Google Scholar 

  • Kuit W, Minton NP, López-Contreras AM, Eggink G (2012) Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3848-4

    PubMed  Google Scholar 

  • Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res 48:3713–3729

    Article  CAS  Google Scholar 

  • Laitinen A, Kaunisto J (1999) Supercritical fluid extraction of 1-butanol from aqueous solutions. The J Supercrit Fluids 15(3):245–252

    Article  CAS  Google Scholar 

  • Larsson S, Reimann A, Nilvebrant N-O, Jönsson LJ (1999) Comparison of different methods for the detoxification of lignocellulose hydrolyzates of spruce. Appl Biochem Biotechnol 77:91–103

    Article  Google Scholar 

  • Lee SM, Cho MO, Park CH, Chung YC, Kim JH, Sang BI, Um Y (2008a) Continuous butanol production using suspended and immobilized Clostridium beijerinckii NCIMB 8052 with supplementary butyrate. Energy Fuels 22(5):3459–3464

    Article  CAS  Google Scholar 

  • Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008b) Fermentative butanol production by clostridia. Biotechnol Bioeng 101:209–228

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Seo E, Kweon DH, Park K, ** YS (2009) Fermentation of rice bran and defatted rice bran for butanol production using Clostridium beijerinckii NCIMB 8052. J Microbiol Biotechnol 19:482–490

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Jang YS, Choi SJ, Im JA, Song H, Cho JH, Seung do Y, Papoutsakis ET, Bennett GN, Lee SY (2012) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol–butanol–ethanol fermentation. Appl Environ Microbiol 78(5):1416–1423

    Article  PubMed  CAS  Google Scholar 

  • Leschinsky M (2009) Water prehydrolysis of Eucalyptus globulus: formation of lignin-derived precipitates that impair the extraction of hemicelluloses. PhD thesis, University of Hamburg, Hamburg

  • Li SY, Srivastava R, Suib SL, Li Y, Parnas RS (2011) Performance of batch, fed-batch, and continuous A-B-E fermentation with pH-control. Bioresource Technol 102(5):4241–4250

    Article  CAS  Google Scholar 

  • Lienhardt J, Schripsema J, Qureshi N, Blaschek HP (2002) Butanol production by Clostridium beijerinckii BA101 in an immobilized cell biofilm reactor-Increase in sugar utilization. App Biochem Biotechnol 98–100:591–598

    Article  Google Scholar 

  • Linek V, Vacek V (1981) Chemical engineering use of catalyzed sulfite oxidation kinetics for the determination of mass transfer characteristics of gas–liquid contactors. Chem Eng Sci 36:1747–1768

    Article  CAS  Google Scholar 

  • Liu Z, Ying Y, Li F, Ma C, Xu P (2010) Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J Ind Microbiol Biotechnol 37(5):495–501

    Article  PubMed  CAS  Google Scholar 

  • Lokman BC, van Santen P, Verdoes JC, Kruse J, Leer RJ, Posno MPouwels PH (1991) Organization and characterization of three genes involved in d-xylose catabolism in Lactobacillus pentosus. Mol Gen Genet 230:161–169

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Zhao J, Yang ST, Wei D (2011) Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas strip**. Bioresour Technol. doi:10.1016/j.biortech.2011.10.089

    Google Scholar 

  • Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:1–44

    Article  CAS  Google Scholar 

  • Mabee WE, Gregg DJ, Arato C, Berlin A, Bura R, Gilkes N, Mirochnik O, Pan X, Pye EK, Saddler JN (2006) Updates on softwood-to-ethanol process development. Appl Biochem Biotechnol 129–132:55–70

    Article  PubMed  Google Scholar 

  • Macho V, Králik M, Jurecekova E, Hudec J, Jurecek L (2001) Dehydration of C4 alkanols conjugated with a positional and skeletal isomerisation of the formed C4 alkenes. Appl Catal A 214:251–257

    Article  CAS  Google Scholar 

  • Maddox IS, Steiner E, Hirsch S, Wessner S, Gutierrez NA, Gapes JR, Schuster KC (2000) The cause of “acid crash” and “acidogenic fermentations” during the batch acetone–butanol–ethanol (ABE) fermentation process. J Mol Microbiol Biotechnol 2(1):95–100

    PubMed  CAS  Google Scholar 

  • Makarova MA, Williams C, Thomas JM, Zamarev KI (1990) Dehydration of n-butanol on HNa-ZSM-5. Catal Lett 4:261–264

    Article  CAS  Google Scholar 

  • Makarova MA, Paukshtis EA, Thomas JM, Williams C, Zamaraev KI (1994) Dehydration of n-butanol on zeolite H-ZSM-5 and amorphous aluminosilicate: detailed mechanistic study and the effect of pore confinement. J Catal 149:36–51

    Article  CAS  Google Scholar 

  • Malaviya A, Jang YS, Lee SY (2011) Continuous butanol production with reduced byproducts formation from glycerol by a hyper producing mutant of Clostridium pasteurianum. Appl Microbiol Biotechnol. doi:10.1007/s00253-011-3629-0

    PubMed  Google Scholar 

  • Mariano AP, Costa CBB, Angelis DF, Filho RM (2010) Dynamics of a continuous flash fermentation for butanol production. Chem Eng Trans 10:285–290

    Google Scholar 

  • Matsumura M, Kataoka H, Sueki M, Araki K (1998) Energy saving effect of pervaporation using oleyl alcohol liquid membrane in butanol purification. Bioprocess Biosyst Eng 3(2):93–100

    Google Scholar 

  • Mohagheghi A, Ruth M, Schell DJ (2006) Conditioning hemicellulose hydrolysates for fermentation: effects of overliming pH on sugar and ethanol yields. Process Biochem 41:1806–1811

    Article  CAS  Google Scholar 

  • Mosier N, Wyman C, Dale B, Elander R, Lee YY, Holtzapple M, Ladisch M (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technol 96(6):673–686

    Article  CAS  Google Scholar 

  • Munday EB, Mullins JC, Edie DD (1980) Vapor-pressure data for toluene, 1-pentanol, 1-butanol, water, and 1-propanol and for the water and 1-propanol system from 273.15-K to 323.15-K. J Chem Eng Data 25:191–204

    Article  CAS  Google Scholar 

  • Nair RV, Green EM, Watson DE, Bennett GN, Papoutskis ET (1999) Regulation of the sol locus genes for butanol and acetone formation in Clostridium acetobutylicum ATCC 824 by a putative transcriptional repressor. J Bacteriol 181:319–330

    PubMed  CAS  Google Scholar 

  • Napoli F, Olivieri G, Russo ME, Marzocchella A, Salatino P (2010) Butanol production by Clostridium acetobutylicum in a continuous packed bed reactor. J Ind Microbiol Biotechnol 37:603–608

    Article  PubMed  CAS  Google Scholar 

  • Nielsen DR, Leonard E, Yoon SH, Tseng HC, Yuan C, Prather KLJ (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11:262–273

    Article  PubMed  CAS  Google Scholar 

  • O’Lenick AJ (2001) Guerbet chemistry. J Surfactants Deterg 4:311–315

    Article  Google Scholar 

  • Oudshoorn A, Van der Wielen LAM, Straathof AJJ (2009) Assessment of options for selective 1-butanol recovery from aqueous solution. Ind Eng Chem Res 48:7325–7336

    Article  CAS  Google Scholar 

  • Oudshoorn A, Peters MCFM, Van der Wielen LAM, Straathof AJJ (2011) Exploring the potential of recovering 1-butanol from aqueous solutions by liquid demixing upon addition of carbohydrates or salts. J Chem Technol Biotechnol 86:714–718

    Article  CAS  Google Scholar 

  • Patakova P, Maxa D, Rychtera M, Linhova M, Fribert P, Muzikova Z, Lipovsky J et al (2011) Perspectives of biobutanol production and use. In: dos Santos Bernardes MA (ed) Biofuel’s engineering process technology. InTech, Croatia, pp 243–266

  • Pienkos PT, Zhang M (2009) Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose 16:743–762

    Article  CAS  Google Scholar 

  • Qureshi N, Schripsema J, Lienhardt J, Blaschek HP (2000) Continuous solvent production by Clostridium beijerinckii BA101 immobilized by adsorption onto brick. World J Microbiol Biotechnol 16:377–382

    Article  CAS  Google Scholar 

  • Qureshi N, Lai L, Blaschek H (2004) Scale-up of a high productivity continuous biofilm reactor to produce butanol by adsorbed cells of Clostridium beijerinckii. Food Bioprod Process 82(2):164–173

    Article  CAS  Google Scholar 

  • Qureshi N, Annous BA, Ezeji TC, Karcher P (2005) Maddox IS biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Factories 4:24

    Article  CAS  Google Scholar 

  • Qureshi N, Saha BC, Cotta MA (2007) Butanol production from wheat straw hydrolysate using Clostridium beijerinckii. Bioproc Biosyst Eng 30:419–427

    Article  CAS  Google Scholar 

  • Qureshi N, Saha BC, Hector RE, Hughes SR, Cotta MA (2008a) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part I—batch fermentation. Biomass Bioenergy 32:168–175

    Article  CAS  Google Scholar 

  • Qureshi N, Saha BC, Cotta MA (2008b) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: part II—fed-batch fermentation. Biomass Bioenergy 32:176–183

    Article  CAS  Google Scholar 

  • Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP (2008c) Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99:5915–5922

    Article  PubMed  CAS  Google Scholar 

  • Qureshi N, Saha BC, Hector RE, Cotta MA (2008d) Removal of fermentation inhibitors from alkaline peroxide pretreated and enzymatically hydrolyzed wheat straw: production of butanol from hydrolysate using Clostridium beijerinckii in batch reactors. Biomass Bioenergy 32:1353–1358

    Article  CAS  Google Scholar 

  • Qureshi N, Saha BC, Dien B, Hector RE, Cotta MA (2010a) Production of butanol (a biofuel) from agricultural residues: part I —use of barley straw hydrolysate. Biomass Bioenergy 34(4):559–565

    Article  CAS  Google Scholar 

  • Qureshi N, Saha BC, Hector RE, Dien B, Hughes S, Liu S, Iten L, Bowman MJ, Sarath G, Cotta MA (2010b) Production of butanol (a biofuel) from agricultural residues: part II—use of corn stover and switchgrass hydrolysates. Biomass Bioenergy 34(4):566–571

    Google Scholar 

  • Rakkolainen M, Iakovlev M, Teräsvuori A-L, Sklavounos E, Jurgens G, Granström TB, van Heiningen A (2010) SO2/ethanol/water fractionation of forest biomass and implications for biofuel production by ABE fermentation. Cellul Chem Technol 44(4–6):139–145

    CAS  Google Scholar 

  • Ranatunga TD, Jervis J, Helm RF, McMillan JD, Wooley RJ (2000) The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: the role of inorganics,uronic acids and ether- soluble organics. Enzyme Microb Technol 27:240–247

    Article  PubMed  CAS  Google Scholar 

  • Ranjan A, Moholkar VS (2011) Comparative study of various pretreatment techniques for rice straw saccharification for the production of alcoholic biofuels. Fuel. doi:10.1016/j.fuel.2011.03.030

    Google Scholar 

  • Ravagnani A, Jennert KC, Steiner E, Grünberg R, Jefferies JR, Wilkinson SR, Young DI, Tidswell EC, Brown DP, Youngman P et al (2000) Spo0A directly controls the switch from acid to solvent production in solvent-forming clostridia. Mol Microbiol 37:1172–1185

    Article  PubMed  CAS  Google Scholar 

  • Retsina T, Pylkkänen V (2007a) Back to the biorefinery: a novel approach to boost pulp mill profits. Paper 360°, pp 18–19 (February issue)

  • Retsina T, Pylkkänen V (2007b) Method for the production of fermentable sugars and cellulose form lignocellulosic material. US patent US 2007/0254348 A1

  • Rogers P, Chen J-S, Zidwick MJ (2006) Organic acid and solvent production (Part III): butanol, acetone and isopropanol. In: Dworkin M (ed) The prokaryotes, 3rd edn. Springer, New York

  • Savrasova EA, Kivero AD, Shakulov RS, Stoynova NV (2011) Use of the valine biosynthetic pathway to convert glucose into isobutanol. J Ind Microbiol Biotechnol 38:1287–1294

    Article  PubMed  CAS  Google Scholar 

  • Schiel B, Böhringer M, Schaffer S, Dürre P (2003) Identification and characterization of a potential transcriptional regulator of the acetoacetate decarboxylase gene of Clostridium acetobutylicum. Biospektrum Special Issue, KB003:39

  • Seregina TA, Shakulov RS, Debabov VG, Mironov AS (2009) Construction E. coli strain, producing butyrate without using of foreign genes. Biotechnology 6:26–37 (in Russian)

    Google Scholar 

  • Shamsudin S, Kalil MSH, Yusoff WMW (2006) Production of acetone, butanol and ethanol (ABE) by Clostridium saccharoperbutylacetonicum N1-4 with different immobilization systems. Pak J Biol Sci 9(10):1923–1928

    Article  CAS  Google Scholar 

  • Shen CR, Liao JC (2008) A synthetic iterative pathway for ketoacid elongation. Metab Eng 10:312–320

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Ko A, Grange P (1990) Study of phosphorus-modified aluminum pillared montmorillonite: I. Effect of the nature of phosphorus compounds. Appl Catal 67:93–106

    Article  CAS  Google Scholar 

  • Shen CR, Lan EI, Dekishima Y, Baez A, Cho KM, Liao JC (2011) Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl Environ Microbiol 77:2905–2915

    Article  PubMed  CAS  Google Scholar 

  • Sikkema J, Debont JAM, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59:201–209

    PubMed  CAS  Google Scholar 

  • Simoni LD, Chapeaux A, Brennecke JF, Stadtherr MA (2010) Extraction of biofuels and biofeedstocks from aqueous solutions using ionic liquids. Comput Chem Eng 34:1406–1412

    Article  CAS  Google Scholar 

  • Sklavounos E, Iakovlev M, Yamamoto M, Teräsvuori L, Jurgens G, Granström T, van Heiningen A (2011) Conditioning of SO2–ethanol–water spent liquor from spruce for the production of chemicals by ABE fermentation. Holzforschung 65(4):551–558

    Article  CAS  Google Scholar 

  • Sonomoto K, Oshiro M, Hanada K, Tashiro Y (2010) Efficient conversion of lactic acid to butanol with pH-stat continuous lactic acid and glucose feeding method by Clostridium saccharoperbutylacetonicum. Appl Microbiol Biotechnol 87(3):1177–1185

    Article  PubMed  CAS  Google Scholar 

  • Standfest T, Nold N, Schiel B, Dürre P (2009) CodY, a potential repressor of butanol formation in Clostridium acetobutylicum. Biospektrum Special Issue, PS21:174

  • Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M, Keasling JD (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7:36

    Article  PubMed  CAS  Google Scholar 

  • Sun Z, Liu S (2011) Production of n-butanol from concentrated sugar maple hemicellulosic hydrolysate by Clostridia acetobutylicum ATCC824. Biomass Bioenerg. doi:10.1016/j.biombioe.2010.07.026

    Google Scholar 

  • Sun Y, ** Y, Gao X, Li X, **ao Y, Yao Z (2010) Effects of byproducts from acid hydrolysis of lignocelluloses on butanol fermentation by Clostridium acetobutylicum CICC8012. Yingyong Yu Huan**g Shengwu Xuebao 16(6):845–850

    CAS  Google Scholar 

  • Survase SA, Sklavounos E, Jurgens G, van Heiningen A, Granström T (2011a) Continuous acetone–butanol–ethanol fermentation using SO2ethanol–water spent liquor from spruce. Bioresour Technol 102(23):10996–11002

    Article  PubMed  CAS  Google Scholar 

  • Survase SA, van Heiningen A, Granström T (2011b) Continuous bio-catalytic conversion of sugar mixture to acetone–butanol–ethanol by immobilized C. acetobutylicum DSM 792. Appl Microbiol Biotechnol. doi: 10.1007/s00253-011-3761-x

  • Survase SA, Jurgens G, Van Heiningen A, Granström T (2011c) Continuous production of isopropanol and butanol using Clostridium beijerinckii DSM 6423. Appl Microbiol Biotechnol 91(5):1305–1313

    Article  PubMed  CAS  Google Scholar 

  • Swana J, Yang Y, Behnam M, Thompson R (2011) An analysis of net energy production and feedstock availability for biobutanol and bioethanol. Bioresour Technol 102:2112–2117

    Article  PubMed  CAS  Google Scholar 

  • Tangney M, Mitchell WJ (2000) Analysis of catabolic operon for sucrose transport and metabolism in Clostridium acetobutylicum ATCC 824. J Mol Microbiol Biotechnol 2:71–80

    PubMed  CAS  Google Scholar 

  • Tashiro Y, Takeda K, Kobayashi G, Sonomoto K, Ishizaki A, Yoshino S (2004) High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-stat continuous butyric acid and glucose feeding method. J Biosci Bioeng 98:263–268

    PubMed  CAS  Google Scholar 

  • Tashiro Y, Takeda K, Kobayashi G, Sonomoto K (2005) High production of acetone–butanol–ethanol with high cell density culture by cell-recycling and bleeding. J Biotechnol 120:197–206

    Article  PubMed  CAS  Google Scholar 

  • Thomas J, Bruno TJ, Wolk A, Naydich A (2009) Composition-explicit distillation curves for mixtures of with four-carbon alcohols (butanols) gasoline. Energy Fuel 23(4):2295–2306

    Article  CAS  Google Scholar 

  • Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell’s transcriptional program. Appl Environ Microbiol 69:4951–4965

    Article  PubMed  CAS  Google Scholar 

  • Tripathi A, Sami H, Jain SR, Viloria-Cols M, Zhuravleva N, Nilsson G, Jungvid H, Kumar A (2010) Improved bio-catalytic conversion by novel immobilization process using cryogel beads to increase solvent production. Enzym Microb Technol 47:44–51

    Article  CAS  Google Scholar 

  • U.S. Department of Energy (2011) U.S. Billion-ton update: biomass supply for a bioenergy and bioproducts industry. Perlack RD, Stokes BJ (Leads) ORNL/TM-2011/224. Oak Ridge National Laboratory, Oak Ridge, p 227

  • Van Heiningen A (2006) Converting a kraft pulp mill into an integrated forest biorefinery. Pulp Pap-Canada 107(6):38-43

    Google Scholar 

  • Van Heiningen A, Iakovlev M, Yamamoto M, Sklavounos E, Melin K, Granström T (2011) Which fractionation process can overcome techno-economic hurdles of a lignocellulosic biorefinery? AIChE Annual Meeting. In: Conference proceedings, Minneapolis

  • Wang Y, Blaschek HP (2011) Optimization of butanol production from tropical maize stalk juice by fermentation with Clostridium beijerinckii NCIMB 8052. Bioresour Technol 102(21):9985–9990

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Chen H (2011) Increased fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production by removal of fermentation inhibitors. Process Biochem 46(2):604–607

    Google Scholar 

  • Wang S, Zhang Y, Dong H, Mao S, Zhu Y, Wang R, Luan G, Li Y (2011) Formic acid triggers the “Acid Crash” of acetone–butanol–ethanol fermentation by Clostridium acetobutylicum. Appl Environ Microbiol 77(5):1674–1680

    Article  PubMed  CAS  Google Scholar 

  • Woodley JM, Bisschops M, Straathof AJJ, Ottens M (2008) Future directions for in situ product removal (ISPR). J Chem Technol Biotechnol 83:121–131

    Article  CAS  Google Scholar 

  • Wyman CE, Dale BE, Elander RT, Holtzapple M, Ladisch MR, Lee YY (2005) Coordinated development of leading biomass pretreatment technologies. Bioresour Technol 96(18):1959–1966

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Iakovlev M, van Heiningen A (2011) Total mass balances of SO2–ethanol–water (SEW) fractionation of forest biomass. Holzforschung 65(4):559–565

    Article  CAS  Google Scholar 

  • Yan Y, Liao JC (2009) Engineering metabolic systems for production of advanced fuels. J Ind Microbiol Biotechnol 36:471–479

    Article  PubMed  CAS  Google Scholar 

  • Yen HW, Li RJ (2011) The effects of dilution rate and glucose concentration on continuous acetone–butanol–ethanol fermentation by Clostridium acetobutylicum immobilized on bricks. J Chem Technol Biotechnol 86(11):1399–1404

    Article  CAS  Google Scholar 

  • Zhang Y, Ma Y, Yang F, Zhang C (2009) Continuous acetone–butanol–ethanol production by corn stalk immobilized cells. J Ind Microbiol Biotechnol 36:1117–1121

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Al-Hajri R, Marri SAI, Chadwick D (2010) One-step dehydration and isomerisation of n-butanol to iso-butanol over zeolite catalysts. Chem Commun 46:4088–4090

    Article  CAS  Google Scholar 

  • Zhao Y, Hindorff LA, Chuang A, Monroe-Augustus M, Lyristis M, Harrison ML, Rudolph FB, Bennett GN (2003) Expression of a cloned cyclopropane fatty acid synthase gene reduces solvent formation in Clostridium acetobutylicum ATCC 824. Appl Environ Microbiol 69:2831–2841

    Article  PubMed  CAS  Google Scholar 

  • Zhu JY, Pan XJ (2010) Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresource Technol 101(13):4992–5002

    Article  CAS  Google Scholar 

  • Zhu JY, Pan X, Zalesny RS Jr (2010) Pretreatment of woody biomass for biofuel production: energy efficiency, technologies, and recalcitrance. Appl Microbiol Biotechnol 87(3):847–857

    Article  PubMed  CAS  Google Scholar 

  • Zotov RA, Molchanov VV, Goidin VV, Moroz EM, Volodin AM (2010) Preparation and characterization of modified aluminum oxide catalysts. Kinet Catal 51:139–142

    Article  CAS  Google Scholar 

  • Zverlov VV, Berezina O, Velikodvorskaya GA, Schwarz WH (2006) Bacterial acetone and butanol production by industrial fermentation in the Soviet Union: use of hydrolyzed agricultural waste for biorefinery. Appl Microbiol Biotechnol 71:587–597

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge and thank Professor Matti Leisola (Department of Biotechnology and Chemical Technology, Aalto University, Finland) for the valuable comments, suggestions and corrections of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Granström Tom.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurgens, G., Survase, S., Berezina, O. et al. Butanol production from lignocellulosics. Biotechnol Lett 34, 1415–1434 (2012). https://doi.org/10.1007/s10529-012-0926-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-012-0926-3

Keywords

Navigation