Log in

Carrier-free immobilized enzymes for biocatalysis

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Methods for the preparation of carrier-free insoluble enzymes are reviewed. The technology of cross-linked enzyme aggregates has now been applied to a range of synthetically useful activities. Fusion proteins are also gaining momentum because they allow a relatively selective aggregation or even a specific self-assembly of the desired enzyme activity into insoluble particles in the absence of potentially denaturing chemicals required for precipitation and cross-linking. Recycling of insoluble protein particles for multiple rounds of batchwise reaction has been demonstrated in selected biotransformations. However, for application in a fully continuous biocatalytic process, low resistance to mechanical stress and high compressibility are issues for consideration on carrier-free enzyme particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aytar BS, Bakir U (2008) Preparation of cross-linked tyrosinase aggregates. Process Biochem 43:125–131

    Article  CAS  Google Scholar 

  • Bayley H, Braha O, Cheley S, Gu L-Q (2004) Engineered nanopores. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology. Wiley-VCH, Weinheim, pp 93–112

    Chapter  Google Scholar 

  • Betancor L, Luckarift HR (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 26:566–572

    Article  CAS  PubMed  Google Scholar 

  • Blecha A, Zarschler K, Sjollema KA, Veenhuis M, Rödel G (2005) Expression and cytosolic assembly of the S-layer fusion protein mSbsC-EGFP in eukaryotic cells. Microb Cell Fact 4:28

    Article  PubMed  Google Scholar 

  • Bommarius AS, Riebel BR (2005) Biocatalysis. Wiley-VCH, Weinheim

    Google Scholar 

  • Buchholz K, Kasche V, Bornscheuer UT (2005) Biocatalysts and enzyme technology. Wiley-VCH, Weinheim

    Google Scholar 

  • Cabana H, Jones JP, Agathos SN (2007) Preparation and characterization of cross-linked laccase aggregates and their application to the elimination of endocrine disrupting chemicals. J Biotechnol 132:23–31

    Article  CAS  PubMed  Google Scholar 

  • Cabirol FL, Tan PL, Tay B, Cheng S, Hanefeld U, Sheldon RA (2008) Linum usitatissimum hydroxynitrile lyase cross-linked enzyme aggregates: a recyclable enantioselective catalyst. Adv Synth Catal 350:2329–2338

    Article  CAS  Google Scholar 

  • Cao L (2005) Carrier-bound immobilized enzymes: principles, applications and design. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Cao L, van Rantwijk F, Sheldon RA (2000) Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org Lett 2:1361–1364

    Article  CAS  PubMed  Google Scholar 

  • Cao L, van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotechnol 14:387–394

    Article  CAS  PubMed  Google Scholar 

  • Carette N, Engelkamp H, Akpa E, Pierre SJ, Cameron NR, Christianen PCM et al (2006) A virus-based biocatalyst. Nat Nanotechnol 2:226–229

    Article  Google Scholar 

  • Chen J, Zhang J, Han B, Li Z, Li J, Feng X (2006) Synthesis of cross-linked enzyme aggregates (CLEAs) in CO2-expanded micellar solutions. Colloids Surf B 48:72–76

    Article  CAS  Google Scholar 

  • Chien L-J, Lee C-K (2007) Biosilicification of dual-fusion enzyme immobilized on magnetic nanoparticle. Biotechnol Bioeng 100:223–230

    Article  Google Scholar 

  • Dalal S, Sharma A, Gupta MN (2007) A multipurpose immobilized biocatalyst with pectinase, xylanase and cellulase activities. Chem Cent J 1:16

    Article  PubMed  Google Scholar 

  • Fujita Y, Mie M, Kobatake E (2009) Construction of nanoscale protein particle using temperature-sensitive elastin-like peptide and polyaspartic acid chain. Biomaterials 30:3450–3457

    Article  CAS  PubMed  Google Scholar 

  • Graff A, Benito SM, Verbert C, Meier W (2004) Polymer nanocontainers. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology. Wiley-VCH, Weinheim, pp 168–184

    Chapter  Google Scholar 

  • Grage K, Rehm BHA (2008) In vivo production of scFv-displaying biopolymer beads using a self-assembly-promoting fusion partner. Bioconjug Chem 19:254–262

    Article  CAS  PubMed  Google Scholar 

  • Haering D, Schreier P (1998) Novel biocatalysts by chemical modification of known enzymes: cross-linked microcrystals of the semisynthetic peroxidase seleno-subtilisin. Angew Chem Int Ed 37:2471–2473

    Article  Google Scholar 

  • Hampp N, Oesterhelt D (2004) Bacteriorhodopsin and its potential in technical applications. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology. Wiley-VCH, Weinheim, pp 146–167

    Chapter  Google Scholar 

  • Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38:453–468

    Article  CAS  PubMed  Google Scholar 

  • Hara P, Hanefeld U, Kanerva LT (2007) Sol–gels and cross-linked aggregates of lipase PS from Burkholderia cepacia and their application in dry organic solvents. J Mol Catal B 50:80–86

    Article  Google Scholar 

  • Heyman A, Levy I, Altman A, Shoseyov O (2007) SP1 as a novel scaffold building block for self-assembly nanofabrication of submicron enzymatic structures. Nano Lett 7:1575–1579

    Article  CAS  PubMed  Google Scholar 

  • Hickey AM, Marle L, McCreedy T, Watts P, Greenway GM, Littlechild JA (2007) Immobilization of thermophilic enzymes in miniaturized flow reactors. Biochem Soc Trans 35:1621–1623

    Article  CAS  PubMed  Google Scholar 

  • Hickey AM, Ngamsom B, Wiles C, Greenway GM, Watts P, Littlechild JA (2009) A microreactor for the study of biotransformations by a cross-linked γ-lactamase enzyme. Biotechnology J 4:510–516

    Article  CAS  Google Scholar 

  • Jekel M, Buhr A, Willke T, Vorlop K-D (1998) Neuartige Geleinschlußimmobilisate (LentiKats) in der Biotechnologie. Chem lngenieur Technik 70:438–441

    Article  CAS  Google Scholar 

  • Kapust RB, Waugh DS (1999) Escherichia coli maltose-binding protein is uncommonly effective at promoting the solubility of polypeptides to which it is fused. Protein Sci 8:1668–1674

    Article  CAS  PubMed  Google Scholar 

  • Khare SK, Vaidya S, Gupta MN (1991) Entrapment of proteins by aggregation within sephadex beads. Appl Biochem Biotechnol 27:205–216

    Article  CAS  PubMed  Google Scholar 

  • Kim MI, Kim J, Lee J, Jia H, Na HB, Youn JK, Kwak JH, Dohnalkova A, Grate JW, Wang P, Hyeon T, Park HG, Chang HN (2007) Cross-linked enzyme aggregates in hierarchically-ordered mesoporous silica: a simple and effective method for enzyme stabilization. Biotechnol Bioeng 96:210–218

    Article  CAS  PubMed  Google Scholar 

  • Kröger N, Lorenz S, Brunner E, Sumper M (2002) Self-assembly of highly phosphorylated silaffins and their function in biosilica morphogenesis. Science 298:584–586

    Article  PubMed  Google Scholar 

  • Kubáč D, Kaplan O, Elišáková V, Pátek M, Vejvoda V, Slámová K, Tóthová A, Lemaire M, Gallienne E, Lutz-Wahl S, Fischer L, Kuzma M, Pelantová H, van Pelt S, Bolte J, Křen V, Martínková L (2008) Biotransformation of nitriles to amides using soluble and immobilized nitrile hydratase from Rhodococcus erythropolis A4. J Mol Catal B 50:107–113

    Article  Google Scholar 

  • Lim DW, Nettles DL, Setton LA, Chilkoti A (2007) Rapid cross-linking of elastin-like polypeptides with hydroxymethylphosphines in aqueous solution. Biomacromolecules 8:1463–1470

    Article  CAS  PubMed  Google Scholar 

  • Littlechild JA, Guy J, Connelly S, Mallett L, Waddell S, Rye CA, Line K, Isupov M (2007) Natural methods of protein stabilization: thermostable biocatalysts. Biochem Soc Trans 35:1558–1563

    Article  CAS  PubMed  Google Scholar 

  • López-Gallego F, Betancor L, Hidalgo A, Alonso N, Fernández-Lafuente R, Guisán JM (2005) Co-aggregation of enzymes and polyethyleneimine: a simple method to prepare stable and immobilized derivatives of glutaryl acylase. Biomacromolecules 6:1839–1842

    Article  PubMed  Google Scholar 

  • López-Serrano P, Cao L, van Rantwijk F, Sheldon RA (2002) Cross-linked enzyme aggregates with enhanced activity: application to lipases. Biotechnol Lett 24:1379–1383

    Article  Google Scholar 

  • Lu J, Tappel RC, Nomura CT (2009) Mini-review: biosynthesis of poly(hydroxyalkanoates). J Macromol Sci C 49:226–248

    CAS  Google Scholar 

  • Luckarift HR, Spain JC, Naik RR, Stone MO (2004) Enzyme immobilization in a biomimetic silica support. Nat Biotechnol 22:211–213

    Article  CAS  PubMed  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    CAS  PubMed  Google Scholar 

  • Margolin AL (1996) Novel crystalline catalysts. Trends Biotechnol 14:223–230

    Article  CAS  Google Scholar 

  • Marner WD, Shaikh AS, Muller SJ, Keasling JD (2009) Enzyme immobilization via silaffin-mediated autoencapsulation in a biosilica support. Biotechnol Prog 25:417–423

    Article  CAS  PubMed  Google Scholar 

  • Mateo C, Palomo JM, van Langen LM, van Rantwijk F, Sheldon RA (2004) A new, mild cross-linking methodology to prepare cross-linked enzyme aggregates. Biotechnol Bioeng 86:273–276

    Article  CAS  PubMed  Google Scholar 

  • Mateo C, Chmura A, Rustler S, van Rantwijk F, Stolz A, Sheldon RA (2006) Synthesis of enantiomerically pure (S)-mandelic acid using an oxynitrilase–nitrilase bienzymatic cascade: a nitrilase surprisingly shows nitrile hydratase activity. Tetrahedron 17:320–323

    Article  CAS  Google Scholar 

  • Meyer DE, Chilkoti A (1999) Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat Biotechnol 17:1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Meyer DE, Trabbic-Carlson K, Chilkoti A (2001) Protein purification by fusion with an environmentally responsive elastin-like polypeptide: effect of polypeptide length on the purification of thioredoxin. Biotechnol Prog 17:720–728

    Article  CAS  PubMed  Google Scholar 

  • Moldes C, García P, García JL, Prieto MA (2004) In vivo immobilization of fusion proteins on bioplastics by the novel tag BioF. Appl Environ Microbiol 70:3205–3212

    Article  CAS  PubMed  Google Scholar 

  • Nahálka J (2008) Physiological aggregation of maltodextrin phosphorylase from Pyrococcus furiosus and its application in a process of batch starch degradation to α-d-glucose-1-phosphate. J Ind Microbiol Biotechnol 35:219–223

    Article  PubMed  Google Scholar 

  • Nahálka J, Nidetzky B (2007) Fusion to a pull-down domain: a novel approach of producing Trigonopsis variabilis d-amino acid oxidase as insoluble enzyme aggregates. Biotechnol Bioeng 97:454–461

    Article  PubMed  Google Scholar 

  • Nahálka J, Pätoprstý V (2009) Enzymatic synthesis of sialylation substrates powered by a novel polyphosphate kinase (PPK3). Org Biomol Chem 7:1778–1780

    Article  PubMed  Google Scholar 

  • Nahálka J, Vikartovská A, Hrabárová E (2008) A cross-linked inclusion body process for sialic acid synthesis. J Biotechnol 134:146–153

    Article  PubMed  Google Scholar 

  • Nahálka J, Mislovičová D, Kavcová H (2009) Targeting lectin activity into inclusion bodies for the characterisation of glycoproteins. Mol Biosyst 5:819–821

    Article  PubMed  Google Scholar 

  • Naik RR, Tomczak MM, Luckarift HR, Spain JC, Stone MO (2004) Entrapment of enzymes and nanoparticles using biomimetically synthesized silica. Chem Commun 1684–1685

  • Neumann L, Spinozzi F, Sinibaldi R, Rustichelli F, Pötter M, Steinbüchel A (2008) Binding of the major phasin, PhaP1, from Ralstonia eutropha H16 to poly(3-hydroxybutyrate) granules. J Bacteriol 190:2911–2919

    Article  CAS  PubMed  Google Scholar 

  • Peters V, Rehm BHA (2006) In vivo enzyme immobilization by use of engineered polyhydroxyalkanoate synthase. Appl Environ Microbiol 72:1777–1783

    Article  CAS  PubMed  Google Scholar 

  • Poulsen N, Berne C, Spain J, Kröger N (2007) Silica immobilization of an enzyme through genetic engineering of the diatom Thalassiosira pseudonana. Angew Chem 119:1875–1878

    Article  Google Scholar 

  • Quiocho FA, Richards FM (1964) Intermolecular cross-linking of a protein in the crystalline state: carboxypeptidase-A. PNAS 52:833–839

    Article  CAS  PubMed  Google Scholar 

  • Rajan A, Abraham TE (2008) Studies on crystallization and cross-linking of lipase for biocatalysis. Bioprocess Biosyst Eng 31:87–94

    Article  CAS  PubMed  Google Scholar 

  • Rajendhran J, Gunasekaran P (2007) Application of cross-linked enzyme aggregates of Bacillus badius penicillin G acylase for the production of 6-aminopenicillanic acid. Lett Appl Microbiol 44:43–49

    Article  CAS  PubMed  Google Scholar 

  • Rehm BHA (2003) Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  CAS  PubMed  Google Scholar 

  • Roy JJ, Abraham TE (2006) Preparation and characterization of cross-linked enzyme crystals of laccase. J Mol Catal B 38:31–36

    Article  CAS  Google Scholar 

  • Schäffer C, Novotny R, Küpcü S, Zayni S, Scheberl A, Friedmann J, Sleytr UB, Messner P (2007) Novel biocatalysts based on S-layer self-assembly of Geobacillus stearothermophilus NRS 2004/3a: a nanobiotechnological approach. Small 3:1549–1559

    Article  PubMed  Google Scholar 

  • Schoevaart R, Wolbers MW, Golubovic M, Ottens M, Kieboom APG, van Rantwijk F, van der Wielen LAM, Sheldon RA (2004) Preparation, optimization and structures of cross-linked enzyme aggregates (CLEAs). Biotechnol Bioeng 87:754–762

    Article  CAS  PubMed  Google Scholar 

  • Schuster B, Pum D, Sleytr UB (2008) S-layer stabilized lipid membranes (review). Biointerphases 3:FA3-11

    Google Scholar 

  • Schwarz A, Thomsen MS, Nidetzky B (2009) Enzymatic synthesis of β-glucosylglycerol using a continuous-flow microreactor containing thermostable β-glycoside hydrolase CelB immobilized on coated microchannel walls. Biotechnol Bioeng 103:865–872

    Article  CAS  PubMed  Google Scholar 

  • Shah S, Sharma A, Gupta MN (2006) Preparation of cross-linked enzyme aggregates by using bovine serum albumin as a proteic feeder. Anal Biochem 351:207–213

    Article  CAS  PubMed  Google Scholar 

  • Sheldon RA (2007a) Enzyme immobilization: the quest for optimum performance. Adv Synth Catal 349:1289–1307

    Article  CAS  Google Scholar 

  • Sheldon RA (2007b) Cross-linked enzyme aggregates (CLEAs): stable and recyclable biocatalysts. Biochem Soc Trans 35:1583–1587

    Article  CAS  PubMed  Google Scholar 

  • Sleytr UB, Egelseer E-M, Pum D, Schuster B (2004) S-layers. In: Niemeyer CM, Mirkin CA (eds) Nanobiotechnology. Wiley-VCH, Weinheim, pp 77–92

    Chapter  Google Scholar 

  • Sleytr UB, Huber C, Ilk N, Pum D, Schuster B, Egelseer EM (2007) S-layers as a tool kit for nanobiotechnological applications. Microbiol Lett 267:131–144

    Article  CAS  Google Scholar 

  • Tang J, Badelt-Lichtblau H, Ebner A, Preiner J, Kraxberger B, Gruber HJ, Sleytr UB, Ilk N, Hinterdorfer P (2008) Fabrication of highly ordered gold nanoparticle arrays templated by crystalline lattices of bacterial S-layer protein. ChemPhysChem 9:2317–2320

    Article  CAS  PubMed  Google Scholar 

  • Thomsen MS, Nidetzky B (2009) Coated-wall microreactor for continuous biocatalytic transformations using immobilized enzymes. Biotechnol J 4:98–107

    Article  CAS  PubMed  Google Scholar 

  • Tschiggerl H, Breitwieser A, de Roo G, Verwoerd T, Schäffer C, Sleytr UB (2008) Exploitation of the S-layer self-assembly system for site directed immobilization of enzymes demonstrated for an extremophilic laminarinase from Pyrococcus furiosus. J Biotechnol 133:403–411

    Article  CAS  PubMed  Google Scholar 

  • Vafiadi C, Topakas E, Christakopoulos P (2008) Preparation of multipurpose cross-linked enzyme aggregates and their application to production of alkyl ferulates. J Mol Catal B 54:35–41

    Article  CAS  Google Scholar 

  • Villaverde A, Carrió MM (2003) Protein aggregation in recombinant bacteria: biological role of inclusion bodies. Biotechnol Lett 25:1385–1395

    Article  CAS  PubMed  Google Scholar 

  • Wang W-X, Pelah D, Alergand T, Shoseyov O, Altman A (2002) Characterization of SP1, a stress-responsive, boiling-soluble, homo-oligomeric protein from aspen. Plant Physiol 130:865–875

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Dgany O, Wolf SG, Levy I, Algom R, Pouny Y et al (2006) Aspen SP1, an exceptional thermal, protease and detergent-resistant self-assembled nano-particle. Biotechnol Bioeng 95:161–168

    Article  CAS  PubMed  Google Scholar 

  • Wilson L, Illanes A, Pessela BCC, Abian O, Fernández-Lafuente R, Guisán JM (2004) Encapsulation of cross-linked penicillin G acylase aggregates in lentikats: evaluation of a novel biocatalyst in organic media. Biotechnol Bioeng 86(5):558–562

    Article  CAS  PubMed  Google Scholar 

  • Yu HW, Chen H, Wang X, Yang YY, Ching CB (2006) Cross-linked enzyme aggregates (CLEAs) with controlled particles: application to Candida rugosa lipase. J Mol Catal B 43:124–127

    Article  CAS  Google Scholar 

  • Zhao L, Zheng L, Gao G, Jia F, Cao S (2008) Resolution of N-(2-ethyl-6-methylphenyl) alanine via cross-linked aggregates of Pseudomonas sp. lipase. J Mol Catal B 54:7–12

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B.N. and J.N. acknowledge support from a project for scientific and technological co-operation between Austria and Slovakia (SK-AT-0024-08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Nidetzky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roessl, U., Nahálka, J. & Nidetzky, B. Carrier-free immobilized enzymes for biocatalysis. Biotechnol Lett 32, 341–350 (2010). https://doi.org/10.1007/s10529-009-0173-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-009-0173-4

Keywords

Navigation