Log in

RAPD Profiling in Detecting Genetic Variation in Endemic Coelonema (Brassicaceae) of Qinghai-Tibet Plateau of China

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Random amplified polymorphic DNA (RAPD) markers were used to measure genetic diversity of Coelonema draboides (Brassicaceae), a genus endemic to the Qilian Mountains of the Qinghai-Tibet Plateau. We sampled 90 individuals in 30 populations of Coelonema draboides from Datong and Huzhu counties of Qinghai Province in P.R. China. A total of 186 amplified bands were scored from the 14 RAPD primers, with a mean of 13.3 amplified bands per primer, and 87% (161 bands) polymorphic bands (PPB) was found. Analysis of molecular variance (AMOVA) shows that a large proportion of genetic variation (84.2%) resides among individuals within populations, while only 15.8% resides among populations. The species shows higher genetic diversity between individuals than other endemic and endangered plants. The RAPDs provide a useful tool for assessing genetic diversity of rare, endemic species and for resolving relationships among populations. The results show that the genetic diversity of this species is high, possibly allowing it to adapt more easily to environmental variations. The main factor responsible for the high level of differentiation within populations and the low level of diversity among populations is probably the outcrossing and long-lived nature of this species. Some long-distance dispersal, even among far separated populations, is also a crucial determinant for the pattern of genetic variation in the species. This distributive pattern of genetic variation of C. draboides populations provides important baseline data for conservation and collection strategies for the species. It is suggested that only populations in different habitats should be studied and protected, not all populations, so as to retain as much genetic diversity as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aagard, J. E., Krutovskii, K. V., and Strauss, S. H. (1998). RAPDs and allozymes exhibit similar levels of diversity and differentiation among populations and races of Douglas fir. Heredity 81:69-78.

    Google Scholar 

  • Abbott, R. J., and Comes, H. P. (2003). Evolution in the Arctic: A phylogeographic analysis of the circumarctic plant, Saxifraga oppositifolia (Purple saxifrage). New Phytol. 161:211-224.

    Google Scholar 

  • Al-Shehbaz, I. A. (1987). The genera of Alysseae (Cruciferae; Brassicaceae) in the Southeastern United States. J. Arnold Arbor. 68:185–240.

    Google Scholar 

  • Ayala, F. J., and Kiger, J. A. 1984. Modern Genetics, 2nd edn., Benjamin-Cumings, Menlo Park, USA.

  • Bauert, M. R., Kälin, M., Baltisberger, M., and Edward, P. J. (1998). No genetic variation within isolated relict populations of Saxifraga crenua in the Alps using RAPD markers. Mol. Ecol. 7:1519–1527.

    Google Scholar 

  • Bronzini, V. de C., Maury, J., Gambotti, C., Breton, C., Bervillé, A., and Giannettini, J. (2002). Mitochondrial DNA variation and RAPD mark oleasters olive and feral olive from Western and Eastern Mediterranean. Theor. Appl. Genet. 104:1209–1216.

    Google Scholar 

  • Ester, S., Sergio, G. N., Maurici, M., and Segura, J. (2001). Population genetic study in the Balearic endemic plant species Digitalis minor (Scrophulaceae) using RAPD markers. Am. J. Bot. 88:1750–1759.

    Google Scholar 

  • Excoffier, L., Smouse, P. E., and Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131:479–491.

    CAS  PubMed  Google Scholar 

  • Fritsch, P., Hanson, M. A., Spore, C. D., Pack, P. E., and Rieseberg, L. H. (1993). Constancy of RAPD primer amplification strength among distantly related taxa of flowering plants. Plant Mol. Biol. Rep. 11:10–20.

    Google Scholar 

  • Fu, C. X., Qiu, Y. X., and Kong, H. H. (2003). RAPD analysis for genetic diversity in Changium smyrnioides (Apiaceae), an endangered plant. Bot. Bull. Acad. Sin. 44:13–18.

    Google Scholar 

  • Gugerli, F., Eichenberger, K., and Schneller, J. J. (1999). Promiscuity in populations of the cushion plant Saxifraga oppositifolia in the Swiss Alps as inferred from random amplified polymorphic DNA (RAPD). Mol. Ecol. 8:453–461.

    Google Scholar 

  • Hadrys, H., Balick, M., and Schierwater, B. (1992). Application of random amplified polymorphic DNA (RAPD) in molecular ecology. Mol. Ecol. 1:55–63.

    Google Scholar 

  • Hamrick, J. L., and Godt, H. J. W. (1996). Conservation genetics of endemic plant species. In Avise, J. C., and Hamrick, J. L. (eds.), Conservation Genetics: Case Studies from Nature, Chapman and Hall, New York, New York, USA, pp. 281–304.

    Google Scholar 

  • Hamrick, J. L., Godt, H. J. W., and Murawski, K. A. (1991). Correlations between species traits and allozyme diversity implications for conservation biology. In Falk, D. A. and Holsinger, K. E. (eds.), Genetics and Conservation of Rare Plants, Oxford University Press, New York, Oxford, pp. 75–86.

    Google Scholar 

  • Hartl, D. L., and Clark, A. G. (eds.) (1994). Principles of Population Genetics, Sinauer, Sunderland, Massachusetts, USA.

    Google Scholar 

  • He, T. N., Liu, S. W., Lu, X. F., and Deng, D. S. (1997). Northern Qilian Mountains floristic analysis to determine the northwestern margin of Tangut flora. Acta Biol. Plant. Sin. 13:69–82.

    Google Scholar 

  • Holderegger, R., Stehlik, I., and Abbott, R. J. (2002). Molecular analysis of the Pleistocene history of Saxifraga oppositifolia in the Alps. Mol. Ecol. 11:1409–1418.

    Google Scholar 

  • Jover, M. A., del Castillo-Agudo, L., Garcia-Carrascosa, M., and Segura, J. (2003). Random amplified polymorphic DNA assessment of diversity in western Mediterranean populations of the seagrass Posidonia oceanica. Am. J. Bot. 90:364–369.

    Google Scholar 

  • Kafkas, S., and Perl-Treves, R. (2001). Morphological and molecular phylogeny of Pistacia species in Turkey. Theor. Appl. Genet. 102:908–915.

    Google Scholar 

  • Kjølner, S., Såstad, S. M., Taberlet, P., and Brochmann, C. (2004). Amplified fragment length polymorphism versus random amplified polymorphic DNA markers: Clonal diversity in Saxifraga crenua. Mel. Ecol. 13:81–86.

    Google Scholar 

  • Koch, M., Al-Shehbaz, I. A., and Mummenhoff, K. (2003). Molecular systematics, evolution, and population biology in the mustard family (Brassicaceae). Ann. Missouri Bot. Gard. 90:151–171.

    Google Scholar 

  • Lesica, P., and Allendorf, F. W. (1992). Are small populations of plants worth preserving? Conserv. Biol. 6:135–139.

    Google Scholar 

  • Loveless, M. D., and Hamrick, J. D. (1984). Ecological determinants of genetic structure in plant populations. Ann. Rev. Ecol. Syst. 15:65–95.

    Google Scholar 

  • Lynch, M., and Milligan, B. G. (1994). Analysis of population genetic structure with RAPD markers. Mol. Ecol. 3:91–99.

    Google Scholar 

  • Maximowicz, C. J. 1880. Coelonema. Bull. Acad. Imper. Sci. St-Peter. 26:423.

    Google Scholar 

  • Nebauer, S. G., del Castillo-Agudo, L., and Segura, J. (1999). RAPD variation within and among natural populations of outcrossing willow-leaved foxglove (Digitalis obscura L). Theor. Appl. Genet. 98:985–994.

    Google Scholar 

  • Nebauer, S. G., del Castillo-Agudo, L., and Segura, J. (2000). An assessment of genetic relationships within the genus Digitalis based on PCR-generated RAPD markers. Theor. Appl. Genet. 100:1209–1216.

    Google Scholar 

  • Pei, Y. L., Zou, Y. P., Yin, Z., Wang, X. Q., Zhang, Z. X., and Hong, D. Y. (1995). Preliminary report of RAPD analysis in Paeonia suffruticosa subsp. spontanea and P. rockii. Acta Phytotaxon. Sin. 33:350–356.

    Google Scholar 

  • Rohlf, F. J. 1994. NTSYS-pc, Numerical Taxonomy and Multivariate Analysis System, v. 1.80, Exeter Software, New York.

  • Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., and Allard, R. W. (1984). Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci., USA 81:8014–8018.

    Google Scholar 

  • Schaal, B. A., Leverich, W. J., and Rogstad, S. H. (1991). Comparison of methods for assessing genetic variation in plant conservation biology. In Falk, D. A. and Holsinger, K. E. (eds.), Genetics and Conservation of Rare Plants, Oxford University Press, New York, pp. 123–134.

    Google Scholar 

  • Shi, Y. F., Li, J. J., and Li, B. Y. 1998. Uplift and Environmental Changes of Qinghai-Tibetan Plateau in the Late Cenozoic, Gaungdong Science and Technology Press, Guangzhou.

    Google Scholar 

  • Sneath, P., and Sokal, R. (eds.) (1973). Numerical Taxonomy, W. H. Freeman and Company, San Francisco.

    Google Scholar 

  • Stehlik, I., Schneller, J. J., and Bachmann, K. (2001). Resistance or emigration: Response of the high-alpine plant Eritrichium nanum (L.) Gaudin to the ice age within the Central Alps. Mol. Ecol. 10:357–370.

    Google Scholar 

  • Steinger, T., Körner, C., and Schmid, B. (1996). Long-term persistence in a changing climate: DNA analysis suggests very old ages of clones of alpine Carex curvula. Oecologia 105:94–99.

    Google Scholar 

  • Su, Y. J., Wang, T., and Huang, C. (1999). RAPD analysis of different population of Dacydium pierrei. Acta Sci. Natl. Univ. Sunyatseni 38:99–101.

    Google Scholar 

  • Wang, X. Q., Zou, Y. P., Zhang, D. M., and Hong, D. Y. (1996). RAPD analysis for genetic polymorphism in Cathaya argyrophylla. Sci. China (C) 26:437–441.

    Google Scholar 

  • Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A., and Tingey, S. V. (1990). DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl. Acid Res. 18:6531–6535.

    Google Scholar 

  • Wu, C. Y. 1980. Vegetation of China, Science Press, Bei**g.

    Google Scholar 

  • Wu, C. Y. (ed.) (1987). Flora of Tibet, vol. 5, Science Press, Bei**g.

    Google Scholar 

  • Wu, S. G., Yang, Y. P., and Fei, Y. (1995). On the flora of the alpine region in the Qinghai-**zang (Tibet) plateau. Acta Bot. Yunnanica 17:233–250.

    Google Scholar 

  • Wulff, E. V. (ed.) (1944). Historical Plant Geography: History of the World Flora, Moscow.

  • Xue, C. Y., Deng, D. S., Chen, S. L., and Liu, J. Q. (2002). The floristic and distribution characteristics of the rare and endangered plants in Qinghai province. Acta Biol. Plant. Sin. 15:83-88.

    Google Scholar 

  • Yun, R., Zhong, M., Wang, H. X., Wei, W., Hu, Z. A., and Qian, Y. Q. (1998). Study on DNA diversity of Liaodong population at Dongling mountain region. Acta Bot. Sin. 40:169–175.

    Google Scholar 

  • Zhang, L. B., Comes, H. P., and Kadereit, J. W. (2001). Phylogeny and quaternary history of the European montane/alpine endemic Soldanella (Primulaceae) based on ITS and AFLP variation. Am. J. Bot. 88:2331–2345.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilong Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, S., **a, T., Chen, S. et al. RAPD Profiling in Detecting Genetic Variation in Endemic Coelonema (Brassicaceae) of Qinghai-Tibet Plateau of China. Biochem Genet 43, 189–201 (2005). https://doi.org/10.1007/s10528-005-1511-4

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10528-005-1511-4

Keywords:

Navigation