Log in

An early prediction of 25th solar cycle using Hurst exponent

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

The analysis of long memory processes in solar activity, space weather and other geophysical phenomena has been a major issue even after the availability of enough data. We have examined the data of various solar parameters like sunspot numbers, 10.7 cm radio flux, solar magnetic field, proton flux and Alfven Mach number observed for the year 1976–2016. We have done the statistical test for persistence of solar activity based on the value of Hurst exponent (\(H\)) which is one of the most classical applied methods known as rescaled range analysis. We have discussed the efficiency of this methodology as well as prediction content for next solar cycle based on long term memory. In the present study, Hurst exponent analysis has been used to investigate the persistence of above mentioned (five) solar activity parameters and a simplex projection analysis has been used to predict the ascension time and the maximum number of counts for 25th solar cycle. For available dataset of the year 1976–2016, we have calculated \(H = 0.86\) and 0.82 for sunspot number and 10.7 cm radio flux respectively. Further we have calculated maximum number of counts for sunspot numbers and F10.7 cm index as \(102.8\pm 24.6\) and \(137.25\pm 8.9\) respectively. Using the simplex projection analysis, we have forecasted that the solar cycle 25th would start in the year 2021 (January) and would last up to the year 2031 (September) with its maxima in June 2024.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams, M., Hathaway, D.H., Stark, B.A., Musielak, Z.E.: Sol. Phys. 174, 341–355 (1997). doi:10.1023/A:1004972624527

    Article  ADS  Google Scholar 

  • Ahmed, A.H.: J. Adv. Res. 4, 209–214 (2013)

    Article  Google Scholar 

  • Archibald, D.: Solar cycle 24: implications for the United States. In: International Conference on Climate Change (2008)

    Google Scholar 

  • Callebaut, D.K.: Approach of a deep minimum in cycle 26 and effect on climate. In: First Middle East and Africa IAU-Regional Meeting Proceedings-MEARIM, pp. 227–230 (2008)

    Google Scholar 

  • Carbonell, M., Oliver, R., Ballester, J.L.: Astron. Astrophys. 274, 497–504 (1993)

    ADS  Google Scholar 

  • Clilverd, M.A., Clarke, E., Ulich, T., Rishbeth, H., Jarvis, M.J.: Space Weather 4(9) (2006)

  • Crutchfield, J.P.: Prediction and stability in classical mechanics. Bachelor’s Thesis, University of California, Santa Cruz (1979)

  • Dikpati, M., Toma, G.D., Gilman, P.A.: Geophys. Res. Lett. 33, L05102 (2006). doi:10.1029/2005GL025221

    Article  ADS  Google Scholar 

  • Du, Z., Du, S.: Sol. Phys. 238, 431–437 (2006)

    Article  ADS  Google Scholar 

  • Farmer, J.D., Sidorowich, J.J.: In: Lee, Y.C. (ed.) Evolution, Learning and Cognition, pp. 277–304. World Scientific, New York (1989)

    Chapter  Google Scholar 

  • Hamid, R.H., Galal, A.A.: J. Adv. Res. 4, 275–278 (2011)

    Google Scholar 

  • Hurst, H.E.: Am. Soc. Civ. Eng. 116, 770–799 (1951)

    Google Scholar 

  • Kakad, B., Kakad, A., Ramesh, D.S.: J. Space Weather Space Clim. 5, A29 (2015)

    Article  Google Scholar 

  • Kakad, B., Kalad, A., Ramesh, D.S.: Sol. Phys. 95, 292 (2017). doi:10.1007/s11207-017-1119-y

    Google Scholar 

  • Kilcik, A., Anderson, C.N.K., Rozelot, J.P.H., Sugihara, G., Ozguc, A.: Astrophys. J. 693, 1173–1177 (2009)

    Article  ADS  Google Scholar 

  • Kontor, N.N.: Adv. Space Res. 13, 417 (1993)

    Article  ADS  Google Scholar 

  • Lepreti, F., Fanello, P.C., Zaccaro, F., Carbone, V.: Sol. Phys. 197, 149–156 (2000)

    Article  ADS  Google Scholar 

  • Mandelbrot, B.: Ann. Econ. Soc. Meas. 1, 259–290 (1972)

    Google Scholar 

  • Martinis, M., Knežević, A., Krstačić, G., Vargović, E.: ar**v:physics/0212029 [physics.med-ph] (2002)

  • Narisma, G., Teresa, T.: Forecasting the behavior of ecological time series by the simplex projection method. Thesis, University of the Philippines, Diliman (1997)

  • Narisma, G.T., Villarin, J.T.: Global climate forecasting by the simplex projection method. Presented at the Samahang Pisikang Pilipinas (SPP) Congress (2000)

  • Oliver, R., Ballester, J.L.: Sol. Phys. 169, 215 (1996)

    Article  ADS  Google Scholar 

  • Oliver, R., Ballester, J.L.: Phys. Rev. E 58, 5650–5654 (1998)

    Article  ADS  Google Scholar 

  • Pesnell, W.D.: Sol. Phys. 252, 209–220 (2008). doi:10.1007/s11207-008-9252-2

    Article  ADS  Google Scholar 

  • Petrovay, K.: Living Rev. Sol. Phys. 7 (2010)

  • Pishkalo, M.I.: Kinemat. Phys. Celest. Bodies 24, 242–247 (2008)

    Article  ADS  Google Scholar 

  • Price, C.P., Prichard, D., Hogenson, E.A.: J. Geophys. Res. Space Phys. 97, 19113 (1992)

    Article  ADS  Google Scholar 

  • Quassim, M., Attia, A.F., Elminir, H.: Sol. Phys. 243, 253–258 (2007)

    Article  ADS  Google Scholar 

  • Rozelot, J.P.: Sol. Phys. 149, 149–156 (1994)

    Article  ADS  Google Scholar 

  • Rozelot, J.P.: Astron. Astrophys. 297, 45–48 (1995)

    ADS  Google Scholar 

  • Rozelot, J.P.: In: Benest, D., Froeschle, C., Lega, E. (eds.) Topics in Gravitational Dynamics: Solar, Extra-Solar and Galactic Systems, vol. 729. Springer, Berlin (2007)

    Chapter  Google Scholar 

  • Rypdal, M., Rypdal, K.: Geophys. Res. 116 (2011)

  • Siingh, D., Singh, R.P., Singh, A.K., Kulkarni, M.N., Gautam, A.S., Singh, A.K.: Surv. Geophys. 32, 659–703 (2011)

    Article  ADS  Google Scholar 

  • Silbergleit, V.M.: Adv. Astron. 167375 (2012)

  • Simonsen, I., Hansen, A., Nes, O.M.: Phys. Rev. E 58, 3 (2008)

    Google Scholar 

  • Singh, A.K., Singh, R.P.: Indian J. Phys. 77, 611–616 (2003)

    Google Scholar 

  • Singh, A.K., Tonk, A.: Astrophys. Space Sci. 352, 367–371 (2014)

    Article  ADS  Google Scholar 

  • Singh, A.K., Siingh, D., Singh, R.P.: Surv. Geophys. 31, 581–638 (2010)

    Article  ADS  Google Scholar 

  • Solanki, S.K., Krivova, N.A.: Science 334(6058), 916–917 (2011)

    Article  ADS  Google Scholar 

  • Solanki, S.K., Usoskin, I.G., Kromer, B., Schüssler, M., Beer, J.: Nature 431, 1084–1087 (2004)

    Article  ADS  Google Scholar 

  • Solheim, J.E., Stordahl, K., Humlum, O.: J. Atmos. Sol.-Terr. Phys. 80, 267–284 (2012)

    Article  ADS  Google Scholar 

  • Stan, C., Cristescu, C.M., Cristescu, C.P.: Computation of Hurst Exponent of time series using delayed (log) returns. Application to estimating the financial volatility. Univ. Politeh. Buchar. Sci. Bull., Ser. A 76 (2014)

  • Sugihara, G., May, R.M.: Nature 344, 734–741 (1990)

    Article  ADS  Google Scholar 

  • Suyal, V., Prasad, A., Singh, H.P.: Sol. Phys. 260, 441–449 (2009)

    Article  ADS  Google Scholar 

  • Takens, F.: Lect. Notes Math. 898, 366–381 (1981)

    Article  MathSciNet  Google Scholar 

  • Zachilas, L., Gkana, A.: Sol. Phys. 290, 1457 (2015)

    Article  ADS  Google Scholar 

  • Zirin, H.: Astrophysics of the Sun. Cambridge University Press, Cambridge (1988)

    Google Scholar 

Download references

Acknowledgements

AB is thankful to University Grants Commission (UGC) for providing financial support in the form of Rajiv Gandhi National Fellowship (Award No. F1-17.1/2016-17/RGNF-2015-17-SC-UTT-28091/(SA-III/website). Authors are also thankful to reviewers for their critical comments and fruitful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.K., Bhargawa, A. An early prediction of 25th solar cycle using Hurst exponent. Astrophys Space Sci 362, 199 (2017). https://doi.org/10.1007/s10509-017-3180-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-017-3180-2

Keywords

Navigation