Log in

Comparative efficacy of mannan-oligosaccharides from two yeast species fed alone or in combination with probiotic Bacillus subtilis ATCC 6633 to Catla (Catla catla) juveniles

  • Published:
Aquaculture International Aims and scope Submit manuscript

Abstract

Saccharomyces cerevisiae is the most commonly used source for mannan-oligosaccharides (MOS) in the animal feed industry. Recently, we proposed Wickerhamomyces anomalus SZ1 isolated and characterized from home-made curd that yield 33% higher MOS than S. cerevisiae as an alternative to the latter (Gupta et al. 2018). This report details the results of a 60-day performance feeding trial in Catla (Catla catla) fish aimed at evaluating comparative efficacy of MOS from W. anomalus (W-MOS) and S. cerevisiae (S-MOS) when fed at 0.4% rate solely or in combination with probiotic (PB) bacteria, Bacillus subtilis ATCC 6633 (106 CFU g−1 feed). One hundred and fifty juveniles were equally distributed in five groups, in triplicates, and were fed one of the five isocaloric and isonitrogenous diets viz. control, 0.4% S-MOS, 0.4% W-MOS, 0.4% S-MOS + PB and 0.4% W-MOS+ PB. Percent weight gain, specific growth rate (SGR) and food conversion ratio (FCR) at the end of experiment indicated that the growth performance of Catla fingerlings with dietary supplementation of 0.4% MOS (4 g kg−1) from either source was significantly better (P < 0.05) than control fish, but further potentiation of effects was observed in W-MOS only indicating species-specific synergistic complementation of pre-probiotics. Packed cell volume was increased with 0.4% MOS feeding, which was further augmented when probiotic was co-fed (P < 0.05). The modulation of activities of digestive (intestinal protease and amylase) (P < 0.01) and metabolic (liver and muscle ALT, AST, LDH, MDH) enzymes (P < 0.05) further supported the improved growth performance of fish. Body composition of fingerlings, at the end of feeding trial, fed 0.4% MOS from either source, alone or in combination with probiotic, was unaffected. It was concluded that MOS from W. anomalus is superior alternative to that from Saccharomyces cerevisiae (W-MOS) and can be used in feed industry along with probiotic in promoting better growth performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ali SR, Ambasankar K, Praveena E, Nandakumar S, Syamadayal J (2017) Effect of dietary mannan oligosaccharide on growth, body composition, haematology and biochemical parameters of Asian seabass (Lates calcarifer). Aquac Res 48:899–908. https://doi.org/10.1111/are.12933

    Article  CAS  Google Scholar 

  • Aly SM, Abdel-Galil Ahmed Y, Abdel-Aziz Ghareeb A, Mohamed MF (2008) Studies on Bacillus subtilis and Lactobacillus acidophilus, as potential probiotics, on the immune response and resistance of Tilapia nilotica (Oreochromis niloticus) to challenge infections. Fish Shellfish Immunol 25(1-2):128–136. https://doi.org/10.1016/j.fsi.2008.03.013

    Article  CAS  PubMed  Google Scholar 

  • Amirkolaie AK, Rostami B (2015) Effects of dietary supplementation with immunogen® on the growth, hematology and gut microbiota of fingerling common carp Cyprinus carpio (Linnaeus). Fish Aquat Sci 18(4):379–385. https://doi.org/10.5657/FAS.2015.0379

    Article  CAS  Google Scholar 

  • Anderson T, Silva DS (2003) Nutrition. In: Lucas SJ, Southgate CP (eds) Aquaculture. Blackwell publishing company, p 502

  • Andrews SR, Sahu NP, Pal AK, Kumar S (2009) Haematological modulation and growth of Labeo rohita fingerlings: effect of dietary mannan oligosaccharide yeast extract, protein hydrolysate and chlorella. Aqua. Res 41(1):61–69

    Article  CAS  Google Scholar 

  • AOAC (1980) Official Methods of Analysis.12th edn. Association of Official Analytical Chemists, Arligton, Virginia, USA

  • APHA, AWWA, WEF (1998) Water environment federation. In: Clesceri LS, Greenberg AE, Eaton AD (eds) Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC

    Google Scholar 

  • Akrami R, Razeghi Mansour M, Chitsaz M, Ziaei R (2012) Effect of dietary manan oligosaccharide on growth performance, survival, body composition and some hematological parameters of carp juvenile (Cyprinus carpio). J. Aqua cul Feed Sci Nutr 4:54–60. http://docsdrive.com/pdfs/medwelljournals/joafsnu/2012/54-60.pdf

    Google Scholar 

  • Akrami R, Razeghi Mansour M, Ghobadi SH, Ahmadifar E, Shaker Khoshroudi M, Moghimi Haji MS (2013) Effect of prebiotic mannan oligosaccharide on hematological and blood serum biochemical parameters of cultured juvenile great sturgeon (Huso huso Linnaeus, 1754) J Appl Ichthy 29(6):1214–1218. https://doi.org/10.1111/jai.12245

    Article  CAS  Google Scholar 

  • Babazadeh D, Vahdatpour T, Nikpiran H, Jafargholipour MA, Vahdatpour S (2011) Effects of probiotic, prebiotic and synbiotic intake on blood enzymes and performance of Japanese quails (Coturnix japonica). Ind J Anim Sci 81(8):870–874

    CAS  Google Scholar 

  • Badia R, Zanello G, Chevaleyre C, Lizardo R, Meurens F, Martínez F, Brufau J, Salmon H (2012) Effect of Saccharomyces cerevisiae var. Boulardii and b-galactomannan oligosaccharide on porcine intestinal epithelial and dendritic cells challenged in vitro with Escherichia coli F4 (K88). Vet Res 43:4–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay P, Das PK, Mohapatra S (2009) Effect of a Probiotic bacterium Bacillus circulans PB7 in the formulated diets: on growth, nutritional quality and immunity of Catla catla (Ham.). Fish Physiol. Biochem 35:467–478

    Article  CAS  PubMed  Google Scholar 

  • Bilinski E (1974) Biochemical aspects of fish swimming. In: Malines BC, Sergeant JR (eds) Biochemical perspectives in marine biology, vol 1. Academic Press, New York, pp 239–288

  • Blaxhall PC, Daisley KW (1973) Routine haematological methods for use with fish blood. J Fish Dis 5:771–781

    Article  Google Scholar 

  • Chatterjee J, Giri S, Maity S, Sinha A, Ranjan A, Rajshekhar GS (2015) Production and characterization of thermostable alkaline protease of Bacillus subtilis (ATCC 6633) from optimized solid-state fermentation. Biotechnol Appl Biochem. 62(5):709–718. https://doi.org/10.1002/bab.1309

    Article  CAS  PubMed  Google Scholar 

  • Cherry IS, Crandall LA (1932) The specificity of pancreatic lipase: its appearance in the blood after pancreatic injury. Am J Physiol 100:266–273

    Article  CAS  Google Scholar 

  • Cutting SM (2011) Bacillus probiotics. Food Microbiol 28(2):214–220. https://doi.org/10.1016/j.fm.2010.03.007

    Article  PubMed  Google Scholar 

  • Daniels CL, Boothroyd DP, Davies SJ, Pryor R, Wells C (2007) The use of pre-biotics in homarid lobster culture. Aquacul Health Int 8:32–35

    Google Scholar 

  • Daniels CL, Merrifield DL, Boothroyd DP, Davies SJ, Factor JR, Arnold KE (2010) Effect of dietary Bacillus spp. and mannan oligosaccharides (MOS) on European lobster (Homarus gammarus L.) larvae growth performance, gut morphology and gut microbiota. Aquaculture 304:49–57

    Article  CAS  Google Scholar 

  • Dehaghani PG, Baboli MJ, Moghadam AT, Ziaei-Nejad S, Pourfarhadi M (2015) Effect of synbiotic dietary supplementation on survival, growth performance, and digestive enzyme activities of common carp (Cyprinus carpio) fingerlings. Czech J Anim Sci 60(5):224–232

    Article  CAS  Google Scholar 

  • Denji KA, Razeghi Mansour M, Akrami R, Ghobadi SH, Jafarpour SA, Mirbeygi SK (2015) Effect of dietary prebiotic mannan oligosaccharide (MOS) on growth performance, intestinal microflora, body composition, haematological and blood serum biochemical parameters of rainbow trout (Oncorhynchus mykiss) juveniles. J Fish Aquat Sci 10:255–265. https://doi.org/10.3923/jfas.2015.255.265

    Article  CAS  Google Scholar 

  • Dimitroglou A, Merrifield DL, Spring P, Sweetman J, Moate R (2010) Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilisation, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata). Aquaculture 300:182–188

    Article  CAS  Google Scholar 

  • Drapeau G (1974) Protease from Staphylococcus aureus. In: Lorand BL (ed) Methods in enzymology. Academic Press, New York, p 469

    Google Scholar 

  • El-Naggar MYM (2004) Comparative study of probiotic cultures to control the growth of Escherichia coli O157: H7 and Salmonella typhimurium. Biotechnology 3:173–180

    Article  Google Scholar 

  • FAO (2016) The state of World fisheries and aquaculture 2014. Food and Agriculture Organization, FAO, Rome

    Google Scholar 

  • Genc MA, Yilmaz E, Genc E, Aktas M (2007a) Effects of dietary mannan oligosaccharides (MOS) on growth, body composition, and intestine and liver histology of the hybrid tilapia (Oreochromis niloticus x O. aureus). Isr J Aquacult 59:10–16

    Google Scholar 

  • Genc MA, Aktas M, Genc E, Yilmaz E (2007b) Effects of dietary mannan oligosaccharide on growth, body composition and hepatopancreas histology of Penaeus semisulcatus (de Haan 1844). Aquac Nutr 13:156–161

    Article  CAS  Google Scholar 

  • Ghosh S, Sinha A, Sahu C (2008) Dietary probiotic supplementation in growth and health of live-bearing ornamental fishes. Aquac Nutr 14(4):289–299

    Article  CAS  Google Scholar 

  • Gibson GR, Roberfroid MB (1995) Dietary modulation of the colonic microbiota: introducing the concept of prebiotics. J. Nutr 125:1401–1412

    Article  CAS  PubMed  Google Scholar 

  • Gültepe N, Salnur S, Hoşsu B, Hisar O (2011) Dietary supplementation with Mannanoligosaccharides (MOS) from Bio‐Mos enhances growth parameters and digestive capacity of gilthead sea bream (Sparus aurata). Aquacult Nutr 17(5):482–487. https://doi.org/10.1111/j.1365-2095.2010.00824.x

    Article  CAS  Google Scholar 

  • Gupta S, Bhathena ZA, Kumar S, Srivastava PP, Jadhao SB (2018) Quantification and characterization of mannan oligosaccharide producing yeasts isolated from various food products. Proc Natl Acad Sci. India Sect. B Biol Sci 88(3):1237–1247. https://doi.org/10.1007/s40011-017-0859-7

    Article  CAS  Google Scholar 

  • Grisdale-Helland B, Helland SJ, Gatlin DMIII (2008) The effects of dietary supplementation with mannanoligosaccharide, fructooligosaccharide or galactooligosaccharide on the growth and feed utilization of Atlantic salmon (Salmo salar). Aquaculture 283:163–167

    Article  CAS  Google Scholar 

  • Halver JE (1976) The nutritional requirements of cultivated warm water and coldwater fish species. Paper no. 31. FAO Technical Conference on Aquaculture, Kyoto, 26 May to 2 June, p 9

  • He S, Xu G, Wu Y, Weng H, **e H (2003) Effects of isomaltooligosaccharide and fructooligosaccharide on the growth performance and non-specific immunity in hybrid tilapia. Chinese Feed 23:14–15 (in Chinese with English abstract)

  • Irianto A, Austin B (2002) Probiotics in aquaculture. J Fish Dis 25:633–642

    Article  Google Scholar 

  • Jhingran VG (1991) Fish and Fisheries of India, 3rd edn. Hindustan Publishing Corporation, India, p 727

    Google Scholar 

  • Klein C, Entian KD (1994) Genes involved in self-protection against the lantibiotic subtilin produced by Bacillus subtilis ATCC 6633. Appl Environ Microbiol 60(8):2793–2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klis FM, Mol P, Hellingwer FK, Brul S (2002) Dynamics of cell wall structure in Sacchromyces cerevisiae. FEMS Microbiol. Rev 26:239–256

    Article  CAS  PubMed  Google Scholar 

  • Knox WE, Greengard O (1965) An introduction to enzyme physiology. In: Weber G (ed) Advances in enzyme regulation, vol 3. Pergamon Press, New York/London, pp 247–248

    Google Scholar 

  • Koedijk RM, Le Francois NR, Blier PU, Foss A, Folkvord A (2010) Ontogenetic effects of diet during early development on growth performance, myosin mRNA expression and metabolic enzyme activity in Atlantic cod juveniles reared at different salinities. Comp Biochem Physiol A Mol Integr Physiol 156(1):102–109

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Jain KK, Sardar P, Jayant M, Tok NC (2018) Effect of dietary synbiotic on growth performance, body composition, digestive enzyme activity and gut microbiota in Cirrhinus mrigala (Ham.) fingerlings. Aquac Nutr 24(3):921–929. https://doi.org/10.1111/anu.12628

    Article  CAS  Google Scholar 

  • Kumar R, Mukherjee SC, Ranjan R, Nayak SK (2008) Enhanced innate immune parameters in Labeo rohita (Ham.) following oral administration of Bacillus subtilis. Fish & Shellfish Immun 24:168–172

    Article  CAS  Google Scholar 

  • Kwiatkowski S, Powers R, Matney C, Ghorghchians PP, Ostertag EM (2011) Composition and methods for separating, characterizing and administering selenoglycoprotein. US Patent Application 20110280948

  • Lessage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70(2):217–343

    Google Scholar 

  • Lee S, Katya K, Hamidoghli A, Hong J, Kim DJ, Bai SC (2018) Synergistic effects of dietary supplementation of Bacillus subtilis WB60 and mannanoligosaccharide (MOS) on growth performance, immunity and disease resistance in Japanese eel. Anguilla japonica. Fish Shellfish Immunol. 83:283–291. https://doi.org/10.1016/j.fsi.2018.09.031

    Article  CAS  Google Scholar 

  • Lippi U, Guidi G (1970) A new colorimetric method for serum glutamicoxalacetic and glutamic-pyruvic transaminase determination. Clin Chim Acta 28:431–437

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosenbrough HJ, Far AL, Randall RT (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Lubran MM (1978) The measurement of total serum proteins by the biuret method. Ann Clin Lab Sci 8:106–110

    CAS  PubMed  Google Scholar 

  • Mahmoudzadeh L, Meshkini S, Tukmehchi A, Motalebi Moghanjoghi AA, Mahmoudzadeh M (2016) Effects of dietary Bacillus subtilis on growth performance and immune responses, in rainbow trout, Oncorhynchus mykiss (Walbaum, 1792). Iran J Fish Sci 15(1):347–359

    Google Scholar 

  • Mehrabi F, Khalesi MK, Hazaie K (2018) Effects of pre - and probiotics on growth, survival, body composition, and hematology of common carp ( Cyprinus carpio L.) fry from the Caspian Sea. Tur J Fish Aquat Sci 18:597–602

    Google Scholar 

  • Mehrabi Z, Firouzbakhsh F, Jafarpour A (2011) Effects of dietary supplementation of synbiotic on growth performance, serum biochemical parameters and carcass composition in rainbow trout (Oncorhynchus mykiss) fingerlings. J Anim Physiol Anim Nutr 96(3):474–481

    Article  CAS  Google Scholar 

  • Merrifield DI, Dimitroglou A, Foey A, Davies SJ, Baker RTM (2010) The current status and future focus of probiotic and prebiotic applications for salmonids. Aquaculture 302:1–18

    Article  Google Scholar 

  • Merrifield DI, Zhou Z (2011) Probiotic and prebiotic applications in aquaculture. J Aquac Res Dev. S1:e001. https://doi.org/10.4172/2155-9546.S1-e001

    Article  Google Scholar 

  • Mirzapour-Rezaee SS, Farhangi M, Rafiee G (2017) Combined effects of dietary mannan- and fructo-oligosaccharide on growth indices, body composition, intestinal bacterial flora and digestive enzymes activity of regal peacock (Aulonocara stuartgranti). Aqua Nutr 23(3):629–636. https://doi.org/10.1111/anu.12430

    Article  CAS  Google Scholar 

  • Mohamed MH, Ahmed Refat NAG (2011) Pathological Evaluation of Probiotic, Bacillus subtilis, against Flavobacterium columnare in Tilapia Nilotica (Oreochromis Niloticus) Fish in Sharkia Governorate, Egypt. J Am Sci 7(2):244–256

    Google Scholar 

  • Momeni-Moghaddam P, Keyvanshokooh S, Ziaei-Nejad S, Parviz Salati A, Pasha-Zanoosi H (2015) Effects of mannan oligosaccharide supplementation on growth, some immune responses and gut lactic acid bacteria of common carp (Cyprinus Carpio) fingerlings. Vet Res Forum. Summer 6(3):239–244

    Google Scholar 

  • Munir MB, Hashim R, Nor SAM, Marsh TL (2018) Effect of dietary prebiotics and probiotics on snakehead (Channa striata) health: haematology and disease resistance parameters against Aeromonas hydrophila. Fish Shellfish Immunol 75:99–108. https://doi.org/10.1016/j.fsi.2018.02.005

    Article  CAS  PubMed  Google Scholar 

  • Nayak SK (2010) Probiotics and immunity: a fish perspective. Fish Shellfish Immunol 30:1–13

    Google Scholar 

  • Ochoa S (1955) Malic dehydrogenase from pig heart. In: Colowick SP, Kaplan NO (eds) Methods of enzymology, vol l. Academic Press, New York, p 735-739

    Google Scholar 

  • Pawar NA, Prakash C, Kohli MPS, Singh SK, Saharan N, Jadhao SB, Devi N, Chaudhari AK (2013) Effect of dietary supplementation of mannanoligosaccharide and Bacillus subtilis on growth performance, immunity, disease resistance and digestive enzyme activities of Labeo fimbriatus fingerlings. Ind J Fish 40:59–75

    Google Scholar 

  • Peat S, Whelan WJ, Edwards TE (1961) Polysaccharides of baker's yeast. Part IV. Mannan. J Chem Soc 1:29–34

    Article  Google Scholar 

  • Pelletier D, Dutil JD, Blier P, Guderley H (1994) Relation between growth-rate and metabolic organization of white muscle, liver and digestive-tract in cod, Gadus morhua. J Comp Physiol B 164:179–190

    Article  Google Scholar 

  • Piccolo G, Centoducati G, Marono S, Bovera F, Tudisco R, Nizza A (2011) Effects of the partial substitution of fish meal by soy bean meal with or without mannanoligosaccharide and fructooligosaccharide on the growth and feed utilization of sharp snout seabream, Diplodus puntazzo (Cetti, 1777): preliminary results. Ital J Anim Sci 10(37):195–199

    CAS  Google Scholar 

  • Poormontaseri M, Hosseinzadeh S, Shekarforoush SS, Kalantari T (2017) The effects of probiotic Bacillus subtilis on the cytotoxicity of Clostridium perfringens type a in Caco-2 cell culture. BMC Microbiol. 17(1):150. https://doi.org/10.1186/s12866-017-1051-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pourabedin M, Yang M, Zhao X (2017) Mannan- and xylooligosaccharides modulate caecal microbiota and expression of inflammatory-related cytokines and reduce caecal Salmonella Enteritidis colonisation in young chickens. FEMS Microbial Ecol 93(1):1–11. https://doi.org/10.1093/femsec/fiw226

    Article  CAS  Google Scholar 

  • Razeghi Mansour M, Akrami R, Ghobadi SH, Amani Denji K, Ezatrahimi N, Gharaei A (2012) Effect of dietary mannan oligosaccharide (MOS) on growth performance, survival, body composition, and some hematological parameters in giant sturgeon juvenile (Huso huso Linnaeus, 1754). Fish Physiol Biochem 38(3):829–835. https://doi.org/10.1007/s10695-011-9570-4

    Article  CAS  PubMed  Google Scholar 

  • Refstie S, Glencross B, Landsverk T, Sørensen M, Lilleeng E, Hawkins W, Krogdahl Å (2006a) Digestion and digestive physiology in Atlantic salmon (Salmo salar) fed kernel meals and protein concentrates made from yellow or narrow-leaf lupins. Aquaculture 261:1382–1395

    Article  CAS  Google Scholar 

  • Refstie S, Landsverk T, Bakke-McKellep AM, Ringø E, Sundby A, Shearer KD, Krogdahl Å (2006b) Digestive capacity, intestinal morphology, and microflora of 1-year and 2-year old Atlantic cod (Gadus morhua) fed standard or bioprocessed soybean meal. Aquaculture 261:269–284

    Article  Google Scholar 

  • Rick W, Stegbauer HP (1974) Amylase measurement of reducing groups. In: Bergmeyer HV (ed) Methods of enzymatic analysis. Academic Press, New York, pp 885–889

    Chapter  Google Scholar 

  • Ringø E, Olsen RE, Gifstad TØ, Dalmo RA, Amlund H, Hemre GI, Bakke AM (2010) Prebiotics in aquaculture: a review. Aquacult Nutr 16:117–136

    Article  CAS  Google Scholar 

  • Rodriguez-Estrada U, Satoh S, Haga Y, Fushimi H, Sweetman J (2009) Effects of single and combined supplementation of Enterococcus faecalis, mannan oligosaccharide and polyhydrobutyric acid on growth performance and immune response of rainbow trout Oncorhynchus mykiss. Aquacult Sci 57:609–617

    CAS  Google Scholar 

  • Sado RY, Bicudo AJA, Cyrino JEP (2008) Feeding dietary mannan oligosaccharides to juvenile Nile tilapia, Oreochromis niloticus have no effect on hematological parameters and showed decreased feed consumption. J World Aquacult Soc 39(6):821–826

    Article  Google Scholar 

  • Salem M, Gaber MM, Zaki MA, Nour AA (2016) Effects of dietary mannan oligosaccharides on growth, body composition and intestine of the sea bass (Dicentrarchus labrax L.). Aquac Res 47:3516–3525. https://doi.org/10.1111/are.12801

    Article  CAS  Google Scholar 

  • Sang HM, Fotedar R, Filer K (2011) Effects of dietary mannan oligosaccharide on the survival, growth, immunity and digestive enzyme activity of freshwater crayfish, Cherax destructor Clark (1936). Aquac Nutr 17:629–635

    Article  Google Scholar 

  • Sang HM, Fotedar R (2010) Prebiotic mannan oligosaccharide diet improves health status of the digestive system of marron, Cherax tenuimanus (Smith 1912). J Appl Aquac 22(3):240–250. https://doi.org/10.1080/10454438.2010.500593

    Article  Google Scholar 

  • Smith DL, Nagy TR, Wilson LS, Dong S, Barnes S, Allison DB (2010) The effect of mannan oligosaccharide supplementation on body weight gain and fat accrual in C57Bl/6J Mice. Obesity (Silver Spring, MD) 18(5):995–999. https://doi.org/10.1038/oby.2009.308

    Article  CAS  Google Scholar 

  • Soleimani N, Hoseinifar SH, Merrifield DL, Barati M, Hassan Abadi Z (2012) Dietary supplementation of fructooligosaccharide (FOS) improves the innate immune response, stress resistance, digestive enzyme activities and growth performance of Caspian roach (Rutilus rutilus) fry. Fish Shellfish Immun 32:316–321

    Article  CAS  Google Scholar 

  • Soltani M, Ghosh K, Hosseinifar S, Kumar V, Lymbery AJ, Roy S, Ringø E (2019) Genus Bacillus, promising probiotics in aquaculture: aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Rev Fish Sci Aqua 27(3):331–379. https://doi.org/10.1080/23308249.2019.1597010

    Article  Google Scholar 

  • Swick RW, Barnstein PL, Stange JL (1965) The metabolism of mitochondrial proteins. I. Distribution and characterization of the isozymes of alanine aminotransferase to diet and hormones. J Biol Chem 240:3334–3340.

  • Ta’ati R, Soltani M, Bahmani M, Zamini AA (2011) Growth performance, carcass composition and immunophysiological indices in juvenile great sturgeon (Huso huso) fed on commercial prebiotic, Immunoster. Ir J Fish Sci 10:324–335

    Google Scholar 

  • Vijayaraghavan S, Rao JVR (1986) Starvational stress effects on tissue lactate and lactate dehydrogenase activity in Anabas scandens (Cuvier). Comp Physiol Ecol 11:233–236

    CAS  Google Scholar 

  • Wang YB, Xu Z (2006) Effect of probiotics for common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Anim Feed Sci Tech 127:283–292

    Article  CAS  Google Scholar 

  • Welke TL, Lim C, Yildirim-Aksoy M, Shelby R, Klesius PH (2007) Immune response and resistance to stress and Edwardsiella ictaluri challenge in channel catfish, Ictalurus punctatus, fed diets containing commercial whole-cell yeast or yeast subcomponents. J World Aquac Soc 38:24–35

    Article  Google Scholar 

  • Wroblewski F, Ladue JS (1955) Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med 90(1):210–213

    Article  CAS  PubMed  Google Scholar 

  • Ye JD, Wang K, Li FD, Sun Y (2011) Single or combined effects of fructo- and mannan oligosaccharide supplements and Bacillus clausii on the growth, feed utilization, body composition, digestive enzyme activity, innate immune response and lipid metabolism of the Japanese flounder Paralichthys olivaceus. Aquacult Nutr 17:902–911

    Article  Google Scholar 

  • Ye X, Li P, Yu Q, Yang Q (2013) Bacillus subtilis inhibition of enterotoxic Escherichia coli-induced activation of MAPK signaling pathways in Caco-2 cells. Ann Microbiol. 63(2):577–581. https://doi.org/10.1007/s13213-012-0506-8

    Article  CAS  Google Scholar 

  • Yilmaz E, Genc MA, Genc E (2007) Effects of dietary mannan oligosaccharides on growth, body composition, and intestine and liver histology of rainbow trout (Oncorhynchus mykiss). Isr J Aquacult-Bamid 59(3):182–158

Download references

Acknowledgments

The authors are grateful to Dr. Gopal Krishna, Director/Vice-Chancellor and Dr. N. P. Sahu, Principal Scientist and Head, FNBP Division, and Dr M. Makesh, Principal Scientist, ICAR-Central Institute of Fisheries Education, Mumbai, India, for providing support, advice and necessary facilities for carrying out this experiment. Senior author (S.G.) is thankful to Dr. K. N. Ghorude, Principal, Vartak College, Vasai West, Dist Palghar, India, for granting kind permission to pursue degree under in-service Ph.D. Program of Mumbai University, Mumbai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shobha Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed by the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Bhathena, Z.P., Kumar, S. et al. Comparative efficacy of mannan-oligosaccharides from two yeast species fed alone or in combination with probiotic Bacillus subtilis ATCC 6633 to Catla (Catla catla) juveniles. Aquacult Int 28, 691–710 (2020). https://doi.org/10.1007/s10499-019-00488-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10499-019-00488-x

Keywords

Navigation