Log in

Exploring the role of ITGB6: fibrosis, cancer, and other diseases

  • Review
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Integrin β6 (ITGB6), a member of the integrin family of proteins, is only present in epithelial tissues and frequently associates with integrin subunit αv to form transmembrane heterodimers named integrin αvβ6. Importantly, ITGB6 determines αvβ6 expression and availability. In addition to being engaged in organ fibrosis, ITGB6 is also directly linked to the emergence of cancer, periodontitis, and several potential genetic diseases. Therefore, it is of great significance to study the molecular-biological mechanism of ITGB6, which could provide novel insights for future clinical diagnosis and therapy. This review introduces the structure, distribution, and biological function of ITGB6. This review also expounds on ITGB6-related diseases, detailing the known biological effects of ITGB6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Figures were partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.

Abbreviations

ITGB6:

Integrin β6

ITGAV:

Integrin αv

MMP:

Matrix metalloproteinase

TGF-β1:

Transforming growth factor β-1

BDEC:

Bile duct epithelial cells

VSMC:

Vascular smooth muscle cells

Elk1:

ETS domain-containing protein

FAK:

Focal adhesion kinase

EMT:

Epithelial-mesenchymal transformation

FOXO1:

Forkhead box O-1

STAT3:

Signal transducers and transcriptional of activator 3

References

  1. Kechagia JZ, Ivaska J, Roca-Cusachs P (2019) Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol 20:457–473. https://doi.org/10.1038/s41580-019-0134-2

    Article  CAS  PubMed  Google Scholar 

  2. Moreno-Layseca P, Icha J, Hamidi H, Ivaska J (2019) Integrin trafficking in cells and tissues. Nat Cell Biol 21:122–132. https://doi.org/10.1038/s41556-018-0223-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Humphries MJ (2000) Integrin structure. Biochem Soc Trans 28:311–339

    Article  CAS  PubMed  Google Scholar 

  4. Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8:215. https://doi.org/10.1186/gb-2007-8-5-215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen W, Harbeck MC, Zhang W, Jacobson JR (2013) MicroRNA regulation of integrins. Translational Research: The Journal of Laboratory and Clinical Medicine 162:133–143. https://doi.org/10.1016/j.trsl.2013.06.008

    Article  CAS  PubMed  Google Scholar 

  6. Molè MA, Weberling A, Fässler R, Campbell A, Fishel S, Zernicka-Goetz M (2021) Integrin β1 coordinates survival and morphogenesis of the embryonic lineage upon implantation and pluripotency transition. Cell Rep 34:108834. https://doi.org/10.1016/j.celrep.2021.108834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sekheri M, Othman A, Filep JG (2021) β2 integrin regulation of Neutrophil Functional plasticity and fate in the resolution of inflammation. Front Immunol 12:660760. https://doi.org/10.3389/fimmu.2021.660760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lainé A, Labiad O, Hernandez-Vargas H, This S, Sanlaville A, Léon S, Dalle S, Sheppard D, Travis MA, Paidassi H, Marie JC (2021) Regulatory T cells promote cancer immune-escape through integrin αvβ8-mediated TGF-β activation. Nat Commun 12:6228. https://doi.org/10.1038/s41467-021-26352-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pang X, He X, Qiu Z, Zhang H, **e R, Liu Z, Gu Y, Zhao N, **ang Q, Cui Y (2023) Targeting integrin pathways: mechanisms and advances in therapy. Signal Transduct Target Therapy 8:1. https://doi.org/10.1038/s41392-022-01259-6

    Article  CAS  Google Scholar 

  10. Fernández-Ruiz E, Sánchez-Madrid F (1994) Regional localization of the human integrin beta 6 gene (ITGB6) to chromosome 2q24-q31. Genomics 21:638–640. https://doi.org/10.1006/geno.1994.1325

    Article  PubMed  Google Scholar 

  11. Brzozowska E, Deshmukh S (2022) Integrin Alpha v Beta 6 (αvβ6) and its implications in Cancer Treatment. Int J Mol Sci 23. https://doi.org/10.3390/ijms232012346

  12. Koivisto L, Bi J, Häkkinen L, Larjava H (2018) Integrin αvβ6: structure, function and role in health and Disease. Int J Biochem Cell Biol 99:186–196. https://doi.org/10.1016/j.biocel.2018.04.013

    Article  CAS  PubMed  Google Scholar 

  13. Morgan MR, Jazayeri M, Ramsay AG, Thomas GJ, Boulanger MJ, Hart IR, Marshall JF (2011) Psoriasin (S100A7) associates with integrin β6 subunit and is required for αvβ6-dependent carcinoma cell invasion. Oncogene 30:1422–1435. https://doi.org/10.1038/onc.2010.535

    Article  CAS  PubMed  Google Scholar 

  14. Duperret EK, Dahal A, Ridky TW (2015) Focal-adhesion-independent integrin-αv regulation of FAK and c-Myc is necessary for 3D skin formation and Tumor invasion. J Cell Sci 128:3997–4013. https://doi.org/10.1242/jcs.175539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Katoh D, Nagaharu K, Shimojo N, Hanamura N, Yamashita M, Kozuka Y, Imanaka-Yoshida K, Yoshida T (2013) Binding of αvβ1 and αvβ6 integrins to tenascin-C induces epithelial-mesenchymal transition-like change of Breast cancer cells. Oncogenesis 2:e65. https://doi.org/10.1038/oncsis.2013.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dong X, Hudson NE, Lu C, Springer TA (2014) Structural determinants of integrin β-subunit specificity for latent TGF-β. Nat Struct Mol Biol 21:1091–1096. https://doi.org/10.1038/nsmb.2905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Paladino A, Civera M, Curnis F, Paolillo M, Gennari C, Piarulli U, Corti A, Belvisi L, Colombo G (2019) The importance of Detail: how differences in Ligand structures determine distinct functional responses in integrin α(v) β(3). Chemistry 25:5959–5970. https://doi.org/10.1002/chem.201900169

    Article  CAS  PubMed  Google Scholar 

  18. Cao D, Qi Z, Pang Y, Li H, **e H, Wu J, Huang Y, Zhu Y, Shen Y, Zhu Y, Dai B, Hu X, Ye D, Wang Z (2019) Retinoic acid-related orphan receptor C regulates proliferation, Glycolysis, and Chemoresistance via the PD-L1/ITGB6/STAT3 Signaling Axis in Bladder Cancer. Cancer Res 79:2604–2618. https://doi.org/10.1158/0008-5472.Can-18-3842

    Article  CAS  PubMed  Google Scholar 

  19. Xu M, Chen X, Yin H, Yin L, Liu F, Fu Y, Yao J, Deng X (2015) Cloning and characterization of the human integrin β6 gene promoter. PLoS ONE 10:e0121439. https://doi.org/10.1371/journal.pone.0121439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dixit RB, Chen A, Chen J, Sheppard D (1996) Identification of a sequence within the integrin beta6 subunit cytoplasmic domain that is required to support the specific effect of alphavbeta6 on proliferation in three-dimensional culture. J Biol Chem 271:25976–25980. https://doi.org/10.1074/jbc.271.42.25976

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Y, Sun Y, Yang F, Guo J, He J, Wu Q, Cao W, Lv L, Zheng H, Zhang Z (2013) Induction of partial protection against foot and mouth Disease virus in guinea pigs by neutralization with the integrin β6 – 1 subunit. Viruses 5:1114–1130. https://doi.org/10.3390/v5041114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Koth LL, Alex B, Hawgood S, Nead MA, Sheppard D, Erle DJ, Morris DG (2007) Integrin beta6 mediates phospholipid and collectin homeostasis by activation of latent TGF-beta1. Am J Respir Cell Mol Biol 37:651–659. https://doi.org/10.1165/rcmb.2006-0428OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Niu J, Li Z (2017) The roles of integrin αvβ6 in cancer. Cancer Lett 403:128–137. https://doi.org/10.1016/j.canlet.2017.06.012

    Article  CAS  PubMed  Google Scholar 

  24. Mori H, Lo AT, Inman JL, Alcaraz J, Ghajar CM, Mott JD, Nelson CM, Chen CS, Zhang H, Bascom JL, Seiki M, Bissell MJ (2013) Transmembrane/cytoplasmic, rather than catalytic, domains of Mmp14 signal to MAPK activation and mammary branching morphogenesis via binding to integrin β1. Development 140:343–352. https://doi.org/10.1242/dev.084236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tod J, Hanley CJ, Morgan MR, Rucka M, Mellows T, Lopez MA, Kiely P, Moutasim KA, Frampton SJ, Sabnis D, Fine DR, Johnson C, Marshall JF, Scita G, Jenei V, Thomas GJ (2017) Pro-migratory and TGF-β-activating functions of αvβ6 integrin in Pancreatic cancer are differentially regulated via an Eps8-dependent GTPase switch. J Pathol 243:37–50. https://doi.org/10.1002/path.4923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lian PL, Liu Z, Yang GY, Zhao R, Zhang ZY, Chen YG, Zhuang ZN, Xu KS (2016) Integrin αvβ6 and matrix metalloproteinase 9 correlate with survival in gastric cancer. World J Gastroenterol 22:3852–3859. https://doi.org/10.3748/wjg.v22.i14.3852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhu H, Liao J, Zhou X, Hong X, Song D, Hou FF, Liu Y, Fu H (2020) Tenascin-C promotes acute kidney injury to chronic Kidney Disease progression by impairing tubular integrity via αvβ6 integrin signaling. Kidney Int 97:1017–1031. https://doi.org/10.1016/j.kint.2020.01.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ciregia F, Deroyer C, Cobraiville G, Plener Z, Malaise O, Gillet P, Fillet M, Malaise MG, de Seny D (2021) Modulation of α(V)β(6) integrin in osteoarthritis-related synovitis and the interaction with VTN((381–397 a.a.)) competing for TGF-β1 activation. Exp Mol Med 53:210–222. https://doi.org/10.1038/s12276-021-00558-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Elosegui-Artola A, Bazellières E, Allen MD, Andreu I, Oria R, Sunyer R, Gomm JJ, Marshall JF, Jones JL, Trepat X, Roca-Cusachs P (2014) Rigidity sensing and adaptation through regulation of integrin types. Nat Mater 13:631–637. https://doi.org/10.1038/nmat3960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Meecham A, Marshall JF (2020) The ITGB6 gene: its role in experimental and clinical biology. Gene X 5:100023. https://doi.org/10.1016/j.gene.2019.100023

    Article  CAS  PubMed  Google Scholar 

  31. Bi J, Koivisto L, Dai J, Zhuang D, Jiang G, Larjava M, Shen Y, Bi L, Liu F, Haapasalo M, Häkkinen L, Larjava H (2019) Epidermal growth factor receptor signaling suppresses αvβ6 integrin and promotes periodontal inflammation and bone loss. J Cell Sci 133. https://doi.org/10.1242/jcs.236588

  32. Zhang Y, Lu W, Zhang X, Lu J, Xu S, Chen S, Zhong Z, Zhou T, Wang Q, Chen J, Liu P (2019) Cryptotanshinone protects against pulmonary fibrosis through inhibiting Smad and STAT3 signaling pathways. Pharmacol Res 147:104307. https://doi.org/10.1016/j.phrs.2019.104307

    Article  CAS  PubMed  Google Scholar 

  33. Dong X, Zhao B, Lin FY, Lu C, Rogers BN, Springer TA (2018) High integrin α(V)β(6) affinity reached by hybrid domain deletion slows ligand-binding on-rate. Proc Natl Acad Sci USA 115:E1429–e1436. https://doi.org/10.1073/pnas.1718662115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Campbell ID, Humphries MJ (2011) Integrin structure, activation, and interactions. Cold Spring Harb Perspect Biol 3. https://doi.org/10.1101/cshperspect.a004994

  35. Henderson NC, Rieder F, Wynn TA (2020) Fibrosis: from mechanisms to medicines. Nature 587:555–566. https://doi.org/10.1038/s41586-020-2938-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wynn TA, Ramalingam TR (2012) Mechanisms of fibrosis: therapeutic translation for fibrotic Disease. Nat Med 18:1028–1040. https://doi.org/10.1038/nm.2807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tatler AL, Habgood A, Porte J, John AE, Stavrou A, Hodge E, Kerama-Likoko C, Violette SM, Weinreb PH, Knox AJ, Laurent G, Parfrey H, Wolters PJ, Wallace W, Alberti S, Nordheim A, Jenkins G (2016) Reduced ets domain-containing protein Elk1 promotes pulmonary fibrosis via increased integrin αvβ6 expression. J Biol Chem 291:9540–9553. https://doi.org/10.1074/jbc.M115.692368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. **e H, Jiao Y, Zhou X, Liao X, Chen J, Chen H, Chen L, Yu S, Deng Q, Sun L, Xu X, Wang J (2022) Integrin αvβ6 contributes to the development of intestinal fibrosis via the FAK/AKT signaling pathway. Exp Cell Res 411:113003. https://doi.org/10.1016/j.yexcr.2021.113003

    Article  CAS  PubMed  Google Scholar 

  39. Chen L, Zhou T, White T, O’Brien A, Chakraborty S, Liangpunsakul S, Yang Z, Kennedy L, Saxena R, Wu C, Meng F, Huang Q, Francis H, Alpini G, Glaser S (2021) The apelin-apelin receptor Axis triggers Cholangiocyte Proliferation and Liver Fibrosis during Mouse models of Cholestasis. Hepatology (Baltimore MD) 73:2411–2428. https://doi.org/10.1002/hep.31545

    Article  CAS  PubMed  Google Scholar 

  40. Guillot A, Guerri L, Feng D, Kim SJ, Ahmed YA, Paloczi J, He Y, Schuebel K, Dai S, Liu F, Pacher P, Kisseleva T, Qin X, Goldman D, Tacke F, Gao B (2021) Bile acid-activated macrophages promote biliary epithelial cell proliferation through integrin αvβ6 upregulation following liver injury. J Clin Investig 131. https://doi.org/10.1172/jci132305

  41. Sullivan BP, Weinreb PH, Violette SM, Luyendyk JP (2010) The coagulation system contributes to alphaVbeta6 integrin expression and liver fibrosis induced by cholestasis. Am J Pathol 177:2837–2849. https://doi.org/10.2353/ajpath.2010.100425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sullivan BP, Cui W, Copple BL, Luyendyk JP (2012) Early growth response factor-1 limits biliary fibrosis in a model of xenobiotic-induced cholestasis in mice. Toxicol Sci 126:267–274. https://doi.org/10.1093/toxsci/kfr311

    Article  CAS  PubMed  Google Scholar 

  43. Hu J, Zeng X, Yuan X (2019) Fetal carotid-jugular fistula: a case report. Med (Baltim) 98:e16250. https://doi.org/10.1097/md.0000000000016250

    Article  Google Scholar 

  44. Kwon SS, Park BW, Lee MH, Goo DE, Nam BD (2020) Right Heart Failure due to arteriovenous fistula after lumbar spine Surgery. Korean J Intern Med 35:1022–1023. https://doi.org/10.3904/kjim.2018.443

    Article  PubMed  Google Scholar 

  45. Zhang Y, Yi J, Zhang R, Peng Y, Dong J, Sha L (2022) Risk factors for arteriovenous fistula Thrombus development: a systematic review and Meta-analysis. Kidney Blood Press Res 47:643–653. https://doi.org/10.1159/000526768

    Article  PubMed  Google Scholar 

  46. Liu CT, Hsu SC, Hsieh HL, Chen CH, Chen CY, Sue YM, Lin FY, Shih CM, Shiu YT, Huang PH (2021) Parathyroid hormone induces transition of myofibroblasts in Arteriovenous Fistula and increases maturation failure. Endocrinology 162. https://doi.org/10.1210/endocr/bqab044

  47. Liu CT, Hsu SC, Hsieh HL, Chen CH, Chen CY, Sue YM, Chen TH, Hsu YH, Lin FY, Shih CM, Shiu YT, Huang PH (2022) Inhibition of β-catenin signaling attenuates arteriovenous fistula thickening in mice by suppressing myofibroblasts. Mol Med 28:7. https://doi.org/10.1186/s10020-022-00436-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Puthawala K, Hadjiangelis N, Jacoby SC, Bayongan E, Zhao Z, Yang Z, Devitt ML, Horan GS, Weinreb PH, Lukashev ME, Violette SM, Grant KS, Colarossi C, Formenti SC, Munger JS (2008) Inhibition of integrin alpha(v)beta6, an activator of latent transforming growth factor-beta, prevents radiation-induced lung fibrosis. Am J Respir Crit Care Med 177:82–90. https://doi.org/10.1164/rccm.200706-806OC

    Article  CAS  PubMed  Google Scholar 

  49. Tatler AL, Goodwin AT, Gbolahan O, Saini G, Porte J, John AE, Clifford RL, Violette SM, Weinreb PH, Parfrey H, Wolters PJ, Gauldie J, Kolb M, Jenkins G (2016) Amplification of TGFβ Induced ITGB6 gene transcription may promote pulmonary fibrosis. PLoS ONE 11:e0158047. https://doi.org/10.1371/journal.pone.0158047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zheng YJ, Li X, Sun L, Guo JW (2019) [Therapeutic effect of dihydroartemisinin on pulmonary fibrosis in rats with dust]. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi 37:96–103. https://doi.org/10.3760/cma.j.issn.1001-9391.2019.02.003

    Article  CAS  PubMed  Google Scholar 

  51. Chen H, Chen L, Wang X, Ge X, Sun L, Wang Z, Xu X, Song Y, Chen J, Deng Q, **e H, Chen T, Chen Y, Ding K, Wu J, Wang J (2021) Transgenic overexpression of ITGB6 in intestinal epithelial cells exacerbates dextran sulfate sodium-induced Colitis in mice. J Cell Mol Med 25:2679–2690. https://doi.org/10.1111/jcmm.16297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li X, Miao Y, Li T, Liu X, Xu L, Guo J, Yu X, Sun B, Zhu Y, Ai D, Chen L (2023) Integrin β6 mediates epithelial-mesenchymal transition in diabetic Kidney Disease. Mol Cell Endocrinol 572:111955. https://doi.org/10.1016/j.mce.2023.111955

    Article  CAS  PubMed  Google Scholar 

  53. Bi J, Dai J, Koivisto L, Larjava M, Bi L, Häkkinen L, Larjava H (2019) Inflammasome and cytokine expression profiling in experimental periodontitis in the integrin β6 null mouse. Cytokine 114:135–142. https://doi.org/10.1016/j.cyto.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  54. Uehara O, Bi J, Zhuang D, Koivisto L, Abiko Y, Häkkinen L, Larjava H (2022) Altered composition of the oral microbiome in integrin beta 6-deficient mouse. J Oral Microbiol 14:2122283. https://doi.org/10.1080/20002297.2022.2122283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu M, Huang J, Zhu F, Shen K, Liu F, Deng X (2022) FOXO1 inhibits FSL-1 regulation of integrin β6 by blocking STAT3 binding to the integrin β6 gene promoter. Front Cell Infect Microbiol 12:998693. https://doi.org/10.3389/fcimb.2022.998693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Seymen F, Lee KE, Koruyucu M, Gencay K, Bayram M, Tuna EB, Lee ZH, Kim JW (2015) Novel ITGB6 mutation in autosomal recessive amelogenesis imperfecta. Oral Dis 21:456–461. https://doi.org/10.1111/odi.12303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ansar M, Jan A, Santos-Cortez RL, Wang X, Suliman M, Acharya A, Habib R, Abbe I, Ali G, Lee K, Smith JD, Nickerson DA, Shendure J, Bamshad MJ, Ahmad W, Leal SM (2016) Expansion of the spectrum of ITGB6-related disorders to adolescent alopecia, dentogingival abnormalities and intellectual disability. Eur J Hum Genet 24:1223–1227. https://doi.org/10.1038/ejhg.2015.260

    Article  CAS  PubMed  Google Scholar 

  58. Weil P, van den Bruck R, Ziegenhals T, Juranek S, Goedde D, Orth V, Wirth S, Jenke AC, Postberg J (2020) β6 integrinosis: a new lethal autosomal recessive ITGB6 disorder leading to impaired conformational transitions of the α(V)β6 integrin receptor. Gut 69:1359–1361. https://doi.org/10.1136/gutjnl-2019-319015

    Article  PubMed  Google Scholar 

  59. Roma M, Hegde P, Durga Nandhini M, Hegde S (2021) Management guidelines for amelogenesis imperfecta: a case report and review of the literature. J Med Case Rep 15:67. https://doi.org/10.1186/s13256-020-02586-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Wang SK, Choi M, Richardson AS, Reid BM, Lin BP, Wang SJ, Kim JW, Simmer JP, Hu JC (2014) ITGB6 loss-of-function mutations cause autosomal recessive amelogenesis imperfecta. Hum Mol Genet 23:2157–2163. https://doi.org/10.1093/hmg/ddt611

    Article  CAS  PubMed  Google Scholar 

  61. Poulter JA, Brookes SJ, Shore RC, Smith CE, Abi Farraj L, Kirkham J, Inglehearn CF, Mighell AJ (2014) A missense mutation in ITGB6 causes pitted hypomineralized amelogenesis imperfecta. Hum Mol Genet 23:2189–2197. https://doi.org/10.1093/hmg/ddt616

    Article  CAS  PubMed  Google Scholar 

  62. Sriwattanapong K, Theerapanon T, Boonprakong L, Srijunbarl A, Porntaveetus T, Shotelersuk V (2023) Novel ITGB6 variants cause hypoplastic-hypomineralized amelogenesis imperfecta and taurodontism: characterization of tooth phenotype and review of literature. BDJ Open 9:15. https://doi.org/10.1038/s41405-023-00142-y

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lyu T, Jiang Y, Jia N, Che X, Li Q, Yu Y, Hua K, Bast RC Jr., Feng W (2020) SMYD3 promotes implant Metastasis of Ovarian cancer via H3K4 trimethylation of integrin promoters. Int J Cancer 146:1553–1567. https://doi.org/10.1002/ijc.32673

    Article  CAS  PubMed  Google Scholar 

  64. Zhuang H, Zhou Z, Ma Z, Li Z, Liu C, Huang S, Zhang C, Hou B (2020) Characterization of the prognostic and oncologic values of ITGB superfamily members in Pancreatic cancer. J Cell Mol Med 24:13481–13493. https://doi.org/10.1111/jcmm.15990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li F, Shang Y, Shi F, Zhang L, Yan J, Sun Q, She J (2020) Expression of integrin β6 and HAX-1 correlates with aggressive features and poor prognosis in esophageal squamous cell carcinoma. Cancer Manag Res 12:9599–9608. https://doi.org/10.2147/cmar.S274892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Soejima Y, Takeuchi M, Miyamoto N, Sawabe M, Fukusato T (2021) ITGB6-Knockout suppresses Cholangiocarcinoma Cell Migration and Invasion with declining PODXL2 expression. Int J Mol Sci 22. https://doi.org/10.3390/ijms22126303

  67. Xu M, Yin H, Cai Y, Huang W, Ji Q, Liu F, Shi S, Deng X (2019) Lysophosphatidic acid induces integrin β6 expression in human oral squamous cell carcinomas cells via LPAR1 coupling to Gα(i) and downstream SMAD3 and ETS-1 activation. Cell Signal 60:81–90. https://doi.org/10.1016/j.cellsig.2019.04.008

    Article  CAS  PubMed  Google Scholar 

  68. Xu M, Yin L, Cai Y, Hu Q, Huang J, Ji Q, Hu Y, Huang W, Liu F, Shi S, Deng X (2018) Epigenetic regulation of integrin β6 transcription induced by TGF-β1 in human oral squamous cell carcinoma cells. J Cell Biochem 119:4193–4204. https://doi.org/10.1002/jcb.26642

    Article  CAS  PubMed  Google Scholar 

  69. Zheng X, Zhu Y, Wang X, Hou Y, Fang Y (2021) Silencing of ITGB6 inhibits the progression of cervical carcinoma via regulating JAK/STAT3 signaling pathway. Ann Transl Med 9:803. https://doi.org/10.21037/atm-21-1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sun Q, Shang Y, Sun F, Dong X, Niu J, Li F (2020) Interleukin-6 promotes epithelial-mesenchymal transition and Cell Invasion through Integrin β6 Upregulation in Colorectal Cancer. Oxidative Med Cell Longev 2020:8032187. https://doi.org/10.1155/2020/8032187

    Article  CAS  Google Scholar 

  71. Deng W, Wang X, Chen L, Wen B, Chen Y, Ji K, Liu H (2022) Proteomic and miRNA profiles of Exosomes Derived from Myometrial Tissue in laboring women. Int J Mol Sci 23. https://doi.org/10.3390/ijms232012343

  72. Krishn SR, Garcia V, Naranjo NM, Quaglia F, Shields CD, Harris MA, Kossenkov AV, Liu Q, Corey E, Altieri DC, Languino LR (2022) Small extracellular vesicle-mediated ITGB6 siRNA delivery downregulates the αVβ6 integrin and inhibits adhesion and migration of recipient Prostate cancer cells. Cancer Biol Ther 23:173–185. https://doi.org/10.1080/15384047.2022.2030622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lenggenhager D, Bengs S, Fritsch R, Hussung S, Busenhart P, Endhardt K, Töpfer A, The FO, Bütikofer S, Gubler C, Scharl M, Morell B (2021) β6-Integrin serves as a potential serum marker for diagnosis and prognosis of pancreatic adenocarcinoma. Clin Transl Gastroenterol 12:e00395. https://doi.org/10.14309/ctg.0000000000000395

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bengs S, Becker E, Busenhart P, Spalinger MR, Raselli T, Kasper S, Lang S, Atrott K, Mamie C, Vavricka SR, von Boehmer L, Knuth A, Tuomisto A, Mäkinen MJ, Hruz P, Turina M, Rickenbacher A, Petrowsky H, Weber A, Frei P, Halama M, Jenkins G, Sheppard D, Croner RS, Christoph J, Britzen-Laurent N, Naschberger E, Schellerer V, Stürzl M, Fried M, Rogler G, Scharl M (2019) β(6) -integrin serves as a novel serum Tumor marker for colorectal carcinoma. Int J Cancer 145:678–685. https://doi.org/10.1002/ijc.32137

    Article  CAS  PubMed  Google Scholar 

  75. Li Z, Sun Y, Xu J, Yang H, Liu X, Tian Y, Cao S, Zhou Y (2021) Integrin-β6 serves as a potential prognostic serum biomarker for gastric Cancer. Front Oncol 11:770997. https://doi.org/10.3389/fonc.2021.770997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Desai K, Nair MG, Prabhu JS, Vinod A, Korlimarla A, Rajarajan S, Aiyappa R, Kaluve RS, Alexander A, Hari PS, Mukherjee G, Kumar RV, Manjunath S, Correa M, Srinath BS, Patil S, Prasad MS, Gopinath KS, Rao RN, Violette SM, Weinreb PH, Sridhar TS (2016) High expression of integrin β6 in association with the Rho-Rac pathway identifies a poor prognostic subgroup within HER2 amplified breast cancers. Cancer Med 5:2000–2011. https://doi.org/10.1002/cam4.756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bishop A, Cartwright JE, Whitley GS (2021) Stanniocalcin-1 in the female reproductive system and pregnancy. Hum Reprod Update 27:1098–1114. https://doi.org/10.1093/humupd/dmab028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lin F, Li X, Wang X, Sun H, Wang Z, Wang X (2022) Stanniocalcin 1 promotes Metastasis, lipid metabolism and cisplatin chemoresistance via the FOXC2/ITGB6 signaling axis in Ovarian cancer. J Exp Clin Cancer Res 41:129. https://doi.org/10.1186/s13046-022-02315-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kanaseki T, Tokita S, Torigoe T (2019) Proteogenomic discovery of cancer antigens: neoantigens and beyond. Pathol Int 69:511–518. https://doi.org/10.1111/pin.12841

    Article  CAS  PubMed  Google Scholar 

  80. MacNabb BW, Tumuluru S, Chen X, Godfrey J, Kasal DN, Yu J, Jongsma MLM, Spaapen RM, Kline DE, Kline J (2022) Dendritic cells can prime anti-tumor CD8(+) T cell responses through major histocompatibility complex cross-dressing. Immunity 55:982–997e988. https://doi.org/10.1016/j.immuni.2022.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Overacre-Delgoffe AE, Bumgarner HJ, Cillo AR, Burr AHP, Tometich JT, Bhattacharjee A, Bruno TC, Vignali DAA, Hand TW (2021) Microbiota-specific T follicular helper cells drive tertiary lymphoid structures and anti-tumor immunity against Colorectal cancer. Immunity 54:2812–2824e2814. https://doi.org/10.1016/j.immuni.2021.11.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Busenhart P, Montalban-Arques A, Katkeviciute E, Morsy Y, Van Passen C, Hering L, Atrott K, Lang S, Garzon JFG, Naschberger E, Hartmann A, Rogler G, Stürzl M, Spalinger MR, Scharl M (2022) Inhibition of integrin αvβ6 sparks T-cell antitumor response and enhances immune checkpoint blockade therapy in Colorectal cancer. J Immunother Cancer 10. https://doi.org/10.1136/jitc-2021-003465

  83. Galluzzi L, Humeau J, Buqué A, Zitvogel L, Kroemer G (2020) Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat Rev Clin Oncol 17:725–741. https://doi.org/10.1038/s41571-020-0413-z

    Article  PubMed  Google Scholar 

  84. Heinhuis KM, Ros W, Kok M, Steeghs N, Beijnen JH, Schellens JHM (2019) Enhancing antitumor response by combining immune checkpoint inhibitors with chemotherapy in solid tumors. Ann Oncol 30:219–235. https://doi.org/10.1093/annonc/mdy551

    Article  CAS  PubMed  Google Scholar 

  85. Wang Y, Wang Z, Li K, **ang W, Chen B, ** L, Hao K (2022) lncRNAs functioned as ceRNA to Sponge miR-15a-5p affects the prognosis of pancreatic adenocarcinoma and correlates with Tumor Immune Infiltration. Front Genet 13:874667. https://doi.org/10.3389/fgene.2022.874667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. McCabe EM, Rasmussen TP (2021) lncRNA involvement in cancer stem cell function and epithelial-mesenchymal transitions. Sem Cancer Biol 75:38–48. https://doi.org/10.1016/j.semcancer.2020.12.012

    Article  CAS  Google Scholar 

  87. Li W, Zhang B, Li H, Zhao C, Zhong Y, Sun J, Lv S (2014) TGF β1 mediates epithelial mesenchymal transition via β6 integrin signaling pathway in Breast cancer. Cancer Invest 32:409–415. https://doi.org/10.3109/07357907.2014.933235

    Article  CAS  PubMed  Google Scholar 

  88. Jiang Y, Zhou T, Shi Y, Feng W, Lyu T (2021) A SMYD3/ITGB6/TGFβ1 positive feedback Loop promotes the Invasion and Adhesion of Ovarian Cancer spheroids. Front Oncol 11:690618. https://doi.org/10.3389/fonc.2021.690618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang M, Lin Y, Wang C, Deng L, Chen M, Assaraf YG, Chen ZS, Ye W, Zhang D (2022) New insights into antiangiogenic therapy resistance in cancer: mechanisms and therapeutic aspects. Drug Resist Updat 64:100849. https://doi.org/10.1016/j.drup.2022.100849

    Article  CAS  PubMed  Google Scholar 

  90. Hussen BM, Salihi A, Abdullah ST, Rasul MF, Hidayat HJ, Hajiesmaeili M, Ghafouri-Fard S (2022) Signaling pathways modulated by miRNAs in Breast cancer angiogenesis and new therapeutics. Pathol Res Pract 230:153764. https://doi.org/10.1016/j.prp.2022.153764

    Article  CAS  PubMed  Google Scholar 

  91. Olejarz W, Kubiak-Tomaszewska G, Chrzanowska A, Lorenc T (2020) Exosomes in Angiogenesis and anti-angiogenic therapy in cancers. Int J Mol Sci 21. https://doi.org/10.3390/ijms21165840

  92. You B, Cao X, Shao X, Ni H, Shi S, Shan Y, Gu Z, You Y (2016) Clinical and biological significance of HAX-1 overexpression in nasopharyngeal carcinoma. Oncotarget 7:12505–12524. https://doi.org/10.18632/oncotarget.7274

    Article  PubMed  PubMed Central  Google Scholar 

  93. You B, Pan S, Gu M, Zhang K, **a T, Zhang S, Chen W, **e H, Fan Y, Yao H, Cheng T, Zhang P, Liu D, You Y (2022) Extracellular vesicles rich in HAX1 promote angiogenesis by modulating ITGB6 translation. J Extracell Vesicles 11:e12221. https://doi.org/10.1002/jev2.12221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu S, Wang J, Niu W, Liu E, Wang J, Peng C, Lin P, Wang B, Khan AQ, Gao H, Liang B, Shahbaz M, Niu J (2013) The β6-integrin-ERK/MAP kinase pathway contributes to chemo resistance in colon Cancer. Cancer Lett 328:325–334. https://doi.org/10.1016/j.canlet.2012.10.004

    Article  CAS  PubMed  Google Scholar 

  95. Janes SM, Watt FM (2004) Switch from alphavbeta5 to alphavbeta6 integrin expression protects squamous cell carcinomas from anoikis. J Cell Biol 166:419–431. https://doi.org/10.1083/jcb.200312074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mao X, Zhang X, Zheng X, Chen Y, Xuan Z, Huang P (2021) Curcumin suppresses LGR5(+) Colorectal cancer stem cells by inducing autophagy and via repressing TFAP2A-mediated ECM pathway. J Nat Med 75:590–601. https://doi.org/10.1007/s11418-021-01505-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gobin E, Bagwell K, Wagner J, Mysona D, Sandirasegarane S, Smith N, Bai S, Sharma A, Schleifer R, She JX (2019) A pan-cancer perspective of matrix metalloproteases (MMP) gene expression profile and their diagnostic/prognostic potential. BMC Cancer 19:581. https://doi.org/10.1186/s12885-019-5768-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Li Z, Biswas S, Liang B, Zou X, Shan L, Li Y, Fang R, Niu J (2016) Integrin β6 serves as an immunohistochemical marker for lymph node Metastasis and promotes cell invasiveness in cholangiocarcinoma. Sci Rep 6:30081. https://doi.org/10.1038/srep30081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gao H, Peng C, Liang B, Shahbaz M, Liu S, Wang B, Sun Q, Niu Z, Niu W, Liu E, Wang J, Lin P, Wang J, Niu J (2014) β6 integrin induces the expression of metalloproteinase-3 and metalloproteinase-9 in colon Cancer cells via ERK-ETS1 pathway. Cancer Lett 354:427–437. https://doi.org/10.1016/j.canlet.2014.08.017

    Article  CAS  PubMed  Google Scholar 

  100. Assou S, Ahmed E, Morichon L, Nasri A, Foisset F, Bourdais C, Gros N, Tieo S, Petit A, Vachier I, Muriaux D, Bourdin A, De Vos J (2023) The Transcriptome Landscape of the In Vitro Human Airway Epithelium response to SARS-CoV-2. Int J Mol Sci 24. https://doi.org/10.3390/ijms241512017

  101. Hu W, Hu Y, Pei Y, Li R, Xu F, Chi X, Mi J, Bergquist J, Lu L, Zhang L, Yang C (2023) Silencing DTX3L inhibits the progression of cervical carcinoma by regulating PI3K/AKT/mTOR signaling pathway. Int J Mol Sci 24. https://doi.org/10.3390/ijms24010861

  102. Maher TM, Simpson JK, Porter JC, Wilson FJ, Chan R, Eames R, Cui Y, Siederer S, Parry S, Kenny J, Slack RJ, Sahota J, Paul L, Saunders P, Molyneaux PL, Lukey PT, Rizzo G, Searle GE, Marshall RP, Saleem A, Kang’ombe AR, Fairman D, Fahy WA, Vahdati-Bolouri M (2020) A positron emission tomography imaging study to confirm target engagement in the lungs of patients with Idiopathic Pulmonary Fibrosis following a single dose of a novel inhaled αvβ6 integrin inhibitor. Respir Res 21:75. https://doi.org/10.1186/s12931-020-01339-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Tu H, Liu H, Zhang L, Tan Z, Wang H, Jiang Y, **a Z, Guo L, **a X, Gu P, Liu X (2022) A novel prognostic model based on three integrin subunit genes-related signature for Bladder cancer. Front Oncol 12:970576. https://doi.org/10.3389/fonc.2022.970576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Safikhani Z, Smirnov P, Thu KL, Silvester J, El-Hachem N, Quevedo R, Lupien M, Mak TW, Cescon D, Haibe-Kains B (2017) Gene isoforms as expression-based biomarkers predictive of drug response in vitro. Nat Commun 8:1126. https://doi.org/10.1038/s41467-017-01153-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. **g C, Ma G, Li X, Wu X, Huang F, Liu K, Liu Z (2016) MicroRNA-17/20a impedes migration and invasion via TGF-β/ITGB6 pathway in esophageal squamous cell carcinoma. Am J Cancer Res 6:1549–1562

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ding X, Wang X, Zhao X, ** S, Tong Y, Ren H, Chen Z, Li Q (2015) RGD peptides protects against acute lung injury in septic mice through Wisp1-integrin β6 pathway inhibition. Shock (Augusta Ga) 43:352–360. https://doi.org/10.1097/shk.0000000000000313

    Article  CAS  PubMed  Google Scholar 

  107. Sun Q, Lu Z, Ma L, Xue D, Liu C, Ye C, Huang W, Dang Y, Li F (2023) Integrin β6 deficiency protects mice from experimental Colitis and colitis-associated carcinoma by altering macrophage polarization. Front Oncol 13:1190229. https://doi.org/10.3389/fonc.2023.1190229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhao P, Mao B, Cai X, Jiang J, Liu Z, Lin J, He X (2018) 2q24 deletion in a 9-month old girl with anal atresia, hearing impairment, and hypotonia. Int J Pediatr Otorhinolaryngol 109:96–100. https://doi.org/10.1016/j.ijporl.2018.03.031

    Article  PubMed  Google Scholar 

  109. Ducceschi M, Clifton LG, Stimpson SA, Billin AN (2014) Post-transcriptional regulation of ITGB6 protein levels in damaged skeletal muscle. J Mol Histol 45:329–336. https://doi.org/10.1007/s10735-014-9567-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (82200330, 82270526, and 82070422), China Postdoctoral Science Foundation (2022M722571), Research Plan Project of Shaanxi Institute of Basic Science (22JHQ053), High-end Foreign Expert Introduction Program of National Science and Technology (G2022040014L), Qinchuangyuan Traditional Chinese Medicine Innovation Research and Development Transformation Project (2022-QCYZH-036).

Author information

Authors and Affiliations

Authors

Contributions

H.Z. and Y.Y. conceives the concept and designs the outline. Z.Z. and Z.W. drafted manuscript. T.L., J.T., Y.L., and T.G. revised and edited the manuscript. K.C., L.W., and J.Z. contributed to picture design. All authors read and approve the final manuscript.

Corresponding authors

Correspondence to Yang Yang or Huan Zhang.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Wang, Z., Liu, T. et al. Exploring the role of ITGB6: fibrosis, cancer, and other diseases. Apoptosis 29, 570–585 (2024). https://doi.org/10.1007/s10495-023-01921-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-023-01921-6

Keywords

Navigation