Log in

Cryptotanshinone enhances TNF-α-induced apoptosis in chronic myeloid leukemia KBM-5 cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Cryptotanshinone is a biologically active compound from the root of Salvia miltiorrhiza. In the present study, we investigated the molecular mechanisms by which cryptotanshinone is in synergy with tumor necrosis factor-alpha (TNF-α) for the induction of apoptosis in human chronic myeloid leukemia (CML) KBM-5 cells. The co-treatment of cryptotanshinone with TNF-α reduced the viability of the cells [combination index (CI) < 1]. Concomitantly, the co-treatment of cryptotanshinone and TNF-α elicited apoptosis, manifested by enhanced the number of terminal deoxynucleotide transferase-mediated dUTP-nick-end labeling (TUNEL)-positive cells, the sub-G1 cell populations, and the activation of caspase-8 and -3, in comparison with the treatment with either drug alone. The treatment with cryptotanshinone further suppressed TNF-α-mediated expression of c-FLIPL, Bcl-xL, but the increased level of tBid (a caspase-8 substrate). Furthermore, cryptotanshinone activated p38 but not NF-κB in TNF-α-treated KBM-5 cells. The addition of a specific p38 MAPK inhibitor SB203580 significantly attenuated cryptotanshinone/TNF-α-induced apoptosis. The combination treatment of cryptotanshinone and TNF-α also stimulated the reactive oxygen species (ROS) generation. N-acetyl-l-cysteine (NAC, a ROS scavenger) was not only able to block cryptotanshinone/TNF-α-induced ROS production but also the activation of caspase-8 and p38 MAPK. Overall, our findings suggest that cryptotanshinone can sensitize TNF-α-induced apoptosis in human myeloid leukemia KBM-5 cells, which appears through ROS-dependent activation of caspase-8 and p38.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chan KF, Siegel MR, Lenardo JM (2000) Signaling by the TNF receptor superfamily and T cell homeostasis. Immunity 13:419–422

    Article  PubMed  CAS  Google Scholar 

  2. Van Herreweghe F, Festjens N, Declercq W, Vandenabeele P (2010) Tumor necrosis factor-mediated cell death: to break or to burst, that’s the question. Cell Mol Life Sci 67:1567–1579

    Article  PubMed  CAS  Google Scholar 

  3. Rath PC, Aggarwal BB (1999) TNF-induced signaling in apoptosis. J Clin Immunol 19:350–364

    Article  PubMed  CAS  Google Scholar 

  4. Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501

    Article  PubMed  CAS  Google Scholar 

  5. Jiang Y, Woronicz JD, Liu W, Goeddel DV (1999) Prevention of constitutive TNF receptor 1 signaling by silencer of death domains. Science 283:543–546

    Article  PubMed  CAS  Google Scholar 

  6. Cho KH, Shin SY, Lee HW, Wolkenhauer O (2003) Investigations into the analysis and modeling of the TNF alpha-mediated NF-kappa B-signaling pathway. Genome Res 13:2413–2422

    Article  PubMed  CAS  Google Scholar 

  7. Vietor I, Schwenger P, Li W, Schlessinger J, Vilcek J (1993) Tumor necrosis factor-induced activation and increased tyrosine phosphorylation of mitogen-activated protein (MAP) kinase in human fibroblasts. J Biol Chem 268:18994–18999

    PubMed  CAS  Google Scholar 

  8. Antosiewicz J, Ziolkowski W, Kaczor JJ, Herman-Antosiewicz A (2007) Tumor necrosis factor-alpha-induced reactive oxygen species formation is mediated by JNK1-dependent ferritin degradation and elevation of labile iron pool. Free Radic Biol Med 43:265–270

    Article  PubMed  CAS  Google Scholar 

  9. Izeradjene K, Douglas L, Tillman DM, Delaney AB, Houghton JA (2005) Reactive oxygen species regulate caspase activation in tumor necrosis factor-related apoptosis-inducing ligand-resistant human colon carcinoma cell lines. Cancer Res 65:7436–7445

    Article  PubMed  CAS  Google Scholar 

  10. Woo CH, Eom YW, Yoo MH et al (2000) Tumor necrosis factor-alpha generates reactive oxygen species via a cytosolic phospholipase A2-linked cascade. J Biol Chem 275:32357–32362

    Article  PubMed  CAS  Google Scholar 

  11. Wang Z, Kishimoto H, Bhat-Nakshatri P, Crean C, Nakshatri H (2005) TNFalpha resistance in MCF-7 breast cancer cells is associated with altered subcellular localization of p21CIP1 and p27KIP1. Cell Death Differ 12:98–100

    Article  PubMed  CAS  Google Scholar 

  12. Tomek S, Horak P, Pribill I et al (2004) Resistance to TRAIL-induced apoptosis in ovarian cancer cell lines is overcome by co-treatment with cytotoxic drugs. Gynecol Oncol 94:107–114

    Article  PubMed  CAS  Google Scholar 

  13. Khwaja A, Tatton L (1999) Resistance to the cytotoxic effects of tumor necrosis factor alpha can be overcome by inhibition of a FADD/caspase-dependent signaling pathway. J Biol Chem 274:36817–36823

    Article  PubMed  CAS  Google Scholar 

  14. Kim H, Kim EH, Eom YW et al (2006) Sulforaphane sensitizes tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistant hepatoma cells to TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of DR5. Cancer Res 66:1740–1750

    Article  PubMed  CAS  Google Scholar 

  15. Moon DO, Kim MO, Lee JD, Choi YH, Kim GY (2010) Rosmarinic acid sensitizes cell death through suppression of TNF-alpha-induced NF-kappaB activation and ROS generation in human leukemia U937 cells. Cancer Lett 288:183–191

    Article  PubMed  CAS  Google Scholar 

  16. Ahn KS, Sethi G, Aggarwal BB (2007) Simvastatin potentiates TNF-alpha-induced apoptosis through the down-regulation of NF-kappaB-dependent antiapoptotic gene products: role of IkappaBalpha kinase and TGF-beta-activated kinase-1. J Immunol 178:2507–2516

    PubMed  CAS  Google Scholar 

  17. Kim EJ, Jung SN, Son KH et al (2007) Antidiabetes and antiobesity effect of cryptotanshinone via activation of AMP-activated protein kinase. Mol Pharmacol 72:62–72

    Article  PubMed  CAS  Google Scholar 

  18. Chen W, Luo Y, Liu L et al (2010) Cryptotanshinone inhibits cancer cell proliferation by suppressing mammalian target of rapamycin-mediated cyclin D1 expression and Rb phosphorylation. Cancer Prev Res (Phila Pa) 3:1015–1025

    Article  CAS  Google Scholar 

  19. Park IJ, Kim MJ, Park OJ et al (2010) Cryptotanshinone sensitizes DU145 prostate cancer cells to Fas(APO1/CD95)-mediated apoptosis through Bcl-2 and MAPK regulation. Cancer Lett 298(1):88–98

    Article  PubMed  CAS  Google Scholar 

  20. Shin DS, Kim HN, Shin KD et al (2009) Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells. Cancer Res 69:193–202

    Article  PubMed  CAS  Google Scholar 

  21. Hur JM, Shim JS, Jung HJ, Kwon HJ (2005) Cryptotanshinone but not tanshinone IIA inhibits angiogenesisin vitro. Exp Mol Med 37:133–137

    PubMed  CAS  Google Scholar 

  22. Chou TC (2010) Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res 70:440–446

    Article  PubMed  CAS  Google Scholar 

  23. Tracey KJ, Cerami A (1993) Tumor necrosis factor: an updated review of its biology. Crit Care Med 21:S415–422

    Article  PubMed  CAS  Google Scholar 

  24. Fulda S (2010) Evasion of apoptosis as a cellular stress response in cancer. Int J Cell Biol 2010:370835

  25. Garg AK, Aggarwal BB (2002) Reactive oxygen intermediates in TNF signaling. Mol Immunol 39:509–517

    Article  PubMed  CAS  Google Scholar 

  26. Li X, Moody MR, Engel D et al (2000) Cardiac-specific overexpression of tumor necrosis factor-alpha causes oxidative stress and contractile dysfunction in mouse diaphragm. Circulation 102:1690–1696

    PubMed  CAS  Google Scholar 

  27. Bazzoni F, Beutler B (1996) The tumor necrosis factor ligand and receptor families. N Engl J Med 334:1717–1725

    Article  PubMed  CAS  Google Scholar 

  28. Chen B, Cao S, Zhang Y et al (2009) A novel peptide (GX1) homing to gastric cancer vasculature inhibits angiogenesis and cooperates with TNF alpha in anti-tumor therapy. BMC Cell Biol 10:63

    Article  PubMed  CAS  Google Scholar 

  29. Watanabe N, Niitsu Y, Sone H et al (1986) Therapeutic effect of endogenous tumor necrosis factor on ascites Meth A sarcoma. J Immunopharmacol 8:271–283

    Article  PubMed  CAS  Google Scholar 

  30. Chen W, Luo Y, Liu L et al (2010) Cryptotanshinone inhibits cancer cell proliferation by suppressing Mammalian target of rapamycin-mediated cyclin D1 expression and Rb phosphorylation. Cancer Prev Res (Phila) 3:1015–1025

    Article  CAS  Google Scholar 

  31. Ye Y, Xu W, Zhong W (2010) Effects of cryptotanshinone on proliferation and apoptosis of Hela cell line of cervical cancer. Zhongguo Zhong Yao Za Zhi 35:118–121

    PubMed  CAS  Google Scholar 

  32. Park IJ, Kim MJ, Park OJ et al (2010) Cryptotanshinone sensitizes DU145 prostate cancer cells to Fas(APO1/CD95)-mediated apoptosis through Bcl-2 and MAPK regulation. Cancer Lett 298:88–98

    Article  PubMed  CAS  Google Scholar 

  33. Aggarwal BB (2004) Nuclear factor-kappaB: the enemy within. Cancer Cell 6:203–208

    Article  PubMed  CAS  Google Scholar 

  34. Amran D, Sanchez Y, Fernandez C et al (2007) Arsenic trioxide sensitizes promonocytic leukemia cells to TNFalpha-induced apoptosis via p38-MAPK-regulated activation of both receptor-mediated and mitochondrial pathways. Biochim Biophys Acta 1773:1653–1663

    Article  PubMed  CAS  Google Scholar 

  35. Bajbouj K, Poehlmann A, Kuester D et al (2009) Identification of phosphorylated p38 as a novel DAPK-interacting partner during TNFalpha-induced apoptosis in colorectal tumor cells. Am J Pathol 175:557–570

    Article  PubMed  CAS  Google Scholar 

  36. Lo YY, Cruz TF (1995) Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem 270:11727–11730

    Article  PubMed  CAS  Google Scholar 

  37. Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR (2007) p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 11:191–205

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korea government (MEST) (No. 2011-0063466). We thank to Dr. Aggarwal (The University of Texas M.D. Anderson Cancer Center) for providing KBM-5 cell line.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Hyun Kim.

Additional information

Ji-Hyun Kim, Soo-** Jeong contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JH., Jeong, SJ., Kwon, TR. et al. Cryptotanshinone enhances TNF-α-induced apoptosis in chronic myeloid leukemia KBM-5 cells. Apoptosis 16, 696–707 (2011). https://doi.org/10.1007/s10495-011-0605-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-011-0605-1

Keywords

Navigation