Log in

Large-Scale Streamwise Vortices in Turbulent Channel Flow Induced by Active Wall Actuations

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Direct numerical simulations of turbulent flow in a plane channel using spanwise alternatively distributed strips (SADS) are performed to investigate the characteristics of large-scale streamwise vortices (LSSVs) induced by small-scale active wall actuations, and their role in suppressing flow separation. SADS control is obtained by alternatively applying out-of-phase control (OPC) and in-phase control (IPC) to the wall-normal velocity component of the lower channel wall, in the spanwise direction. Besides the non-controlled channel flow simulated as a reference, four controlled cases with 1, 2, 3 and 4 pairs of OPC/IPC strips are studied at M = 0.2 and R e = 6,000, based on the bulk velocity and the channel half height. The case with 2 pairs of strips, whose width is Δz + = 264 based on the friction velocity of the non-controlled case, is the most effective in terms of generating large-scale motions. It is also found that the OPC (resp. IPC) strips suppress (resp. enhance) the coherent structures and that leads to the creation of a vertical shear layer, which is responsible for the LSSVs presence. They are in a statistically steady state and their cores are located between two neighbouring OPC and IPC strips. These motions contribute significantly to the momentum transport in the wall-normal and spanwise directions showing potential for flow separation suppression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Kim, J.: Physics and control of wall turbulence for drag reduction. Phil. Trans. R. Soc. A 369, 1396–1411 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Leschziner, M.A., Choi, H., Choi, K.S.: Flow-control approaches to drag reduction in aerodynamics: progress and prospects. Phil. Trans. R. Soc. A 369, 1349–1351 (2011)

    Article  Google Scholar 

  3. Taylor, H.D.: The elimination of diffuser separation by vortex generators. United Aircraft Corporation Report No. R-4012-3 (1947)

  4. Rao, D.M., Kariya, T.T.: Boundary-layer submerged vortex generators for separation control—an exploratory study. AIAA Paper 88-3546-CP, AIAA/ASME/SIAM/APS 1st National Fluid Dynamics Congress, Cincinnati, OH, July 25–28 (1988)

  5. Lin, J.C., Howard, F.G., Selby, G.V.: Small submerged vortex generators for turbulent flow separation control. J. Spacecr. Rockets 27, 503–507 (1990)

    Article  Google Scholar 

  6. Lin, J.C., Selby, G.V., Howard, F.G.: Exploratory study of vortex-generating devices for turbulent flow separation control. AIAA Paper 91-0042, AIAA 29th Aerospace Sciences Meeting, Reno, NV, January 7–10 (1991)

  7. Lin, J.C.: Control of turbulent boundary-layer separation using micro-vortex generators. AIAA Paper 99-3404, 30th AIAA Fluid Dynamics Conference, Norfolk, VA, June 28–July 1 (1999)

  8. Jenkins, L., Gorton, S.A., Anders, S.: Flow control device evaluation for an internal flow with an adverse pressure gradient. AIAA Paper 2002-0266, 40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, January 14–17 (2002)

  9. Nugroho, B., Hutchins, N., Monty, J.P.: Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and directional surface roughness. Int. J. Heat Fluid Flow 41, 90–102 (2013)

    Article  Google Scholar 

  10. Willingham, D., Anderson, W., Christensen, K.T., Barros, J.M.: Turbulent boundary layer flow over transverse aerodynamic roughness transitions: Induced mixing and flow characterization. Phys. Fluids 26, 25–42 (2014)

    Article  Google Scholar 

  11. Mejia-Alvarez, R., Christensen, K.T.: Wall-parallel stereo particle-image velocimetry measurements in the roughness sublayer of turbulent flow overlying highly irregular roughness. Phys. Fluids 25, 115109 (2013)

    Article  Google Scholar 

  12. Mejia-Alvarez, R., Barros, J.M., Christensen, K.T.: Structural attributes of turbulent flow over a complex topography. In: Coherent Flow Structures at Earth’s Surface, pp. 25–41 (2013)

  13. Ganapathisubramani, B., Longmire, E. K., Marusic, I.: Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 35–46 (2003)

    Article  MATH  Google Scholar 

  14. Tomkins, D., Adrian, R.J.: Spanwise structure and scale growth in turbulent boundary layers. J. Fluid Mech. 490, 37–74 (2003)

    Article  MATH  Google Scholar 

  15. Kline, S.J., Reynolds, W.C., Schraub, F.A., Rundstadler, P.W.: The structure of turbulent boundary layers. J. Fluid Mech. 30, 741–773 (1967)

    Article  Google Scholar 

  16. Robinson, S.K.: Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601–639 (1991)

    Article  Google Scholar 

  17. Schoppa, W., Hussain, F.: Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57–108 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vermaas, A., Uijttewaal, W.S.J., Hoitink, A.J.F.: Lateral transfer of streamwise momentum caused by a roughness transition across a shallow channel. Water Resour. Res. 47, 2144–2150 (2011)

    Article  Google Scholar 

  19. Mejia-Alvarez, R., Christensen, K.T.: Low-order representations of irregular surface roughness and their impact on a turbulent boundary layer. Phys. Fluids 22, 015106 (2010)

    Article  MATH  Google Scholar 

  20. Hinze, J.O.: Secondary currents in wall turbulence. Phys Fluids 10, S122–S125 (1967)

    Article  Google Scholar 

  21. Hinze, J.O.: Experimental investigation on secondary currents in the turbulent flow through a straight conduit. Appl. Sci. Res. 28, 453–465 (1973)

    Article  Google Scholar 

  22. Stroh, A., Hasegawa, Y., Kriegseis, J., Frohnapfel, B.: Secondary vortices over surfaces with spanwise varying drag. J. Turbul. 17, 1142–1158 (2016)

    Article  MathSciNet  Google Scholar 

  23. Townsend, A.A.: The structure of turbulent shear flow. Cambridge University Press, London (1956)

    MATH  Google Scholar 

  24. Koeltzsch, K., Dinkelacker, A., Grundmann, R.: Flow over convergent and divergent wall riblets. Exp. Fluids 33, 346–350 (2002)

    Article  Google Scholar 

  25. Fang, J., Yao, Y., Li, Z., Lu, L.: Investigation of low-dissipation monotonicity-preserving scheme for direct numerical simulation of compressible turbulent flows. Comput. Fluids 104, 55–72 (2014)

    Article  MathSciNet  Google Scholar 

  26. Fang, J., Yao, Y., Zheltovodov, A.A., Li, Z., Lu, L.: Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner. Phys. Fluids 27, 125104 (2015)

    Article  Google Scholar 

  27. Fang, J., Yao, Y., Zheltovodov, A.A., Lu, L.: Investigation of three-dimensional shock wave/turbulent-boundary-layer interaction initiated by a single fin. AIAA J. 55, 509–523 (2016)

    Article  Google Scholar 

  28. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comp. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sandham, N.D., Li, Q., Yee, H.C.: Entropy splitting for high–order numerical simulation of compressible turbulence. J. Comp. Phys. 178, 307–322 (2002)

    Article  MATH  Google Scholar 

  30. Gaitonde, D.V., Visbal, M.R.: Pade-type higher-order boundary filters for the Navier–Stokes equations. AIAA J. 38, 2103–2112 (2000)

    Article  Google Scholar 

  31. Ottlieb, S., Shu, C.W.: Total variation diminishing Runge–Kutta schemes. Math. Comput. 67, 73–85 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sagaut, P.: Theoretical background: large-eddy simulation, large-eddy simulation for acoustics. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  33. Lenormand, E., Sagaut, P., Phuoc, L.T.: Large eddy simulation of subsonic and supersonic channel flow at moderate Reynolds number. Int. J. Numer. Methods Fluids 32, 369–406 (2000)

    Article  MATH  Google Scholar 

  34. Choi, H., Moin, P., Kim, J.: Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75–110 (1994)

    Article  MATH  Google Scholar 

  35. Fang, J., Lu, L.: Large eddy simulation of compressible turbulent channel flow with active spanwise wall fluctuations. Mod. Phys. Lett. B 24, 1457–1460 (2010)

    Article  MATH  Google Scholar 

  36. Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to R e τ = 590. Phys. Fluids 11, 943–945 (1999)

    Article  MATH  Google Scholar 

  37. Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T.M.: Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  38. Adrian, R.J., Christensen, K.T., Liu, Z.C.: Analysis and interpretation of instantaneous turbulent velocity fields. Exp. Fluids 29, 275–290 (2000)

    Article  Google Scholar 

  39. Adrian, R.J.: Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301 (2007)

    Article  MATH  Google Scholar 

  40. Choi, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 255, 503–539 (1993)

    Article  MATH  Google Scholar 

  41. Hansen, K.L., Rostamzadeh, N., Kelso, R.M., Dally, B.B.: Evolution of the streamwise vortices generated between leading edge tubercles. J. Fluid Mech. 788, 730–766 (2016)

    Article  Google Scholar 

  42. Barros, J.M., Christensen, K.T.: Observations of turbulent secondary flows in a rough-wall boundary layer. J. Fluid Mech. 748, R1 (2014)

    Article  Google Scholar 

  43. Kevin, K., Monty, J.P., Bai, H.L., Pathikonda, G., Nugroho, B., Barros, J.M., Christensen, K.T., Hutchins, N.: Cross-stream stereoscopic particle image velocimetry of a modified turbulent boundary layer over directional surface pattern. J. Fluid Mech. 813, 412–435 (2017)

    Article  MathSciNet  Google Scholar 

  44. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  45. Jiménez, J.: Near-wall turbulence. Phys. Fluids 25, 101302 (2013)

    Article  Google Scholar 

  46. Adrian, R.J., Meinhart, C.D., Tomkins, C.D.: Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 1–54 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The project is supported by the Key Subjects of the National Natural Science Foundation of China (51420105008, 11572025 and 51476004), the UK Turbulence Consortium via EPSRC (Grant number EP/L000261/1), and the Department of Research and Advanced Engineering of PSA. The authors also would like to thank EPSRC for the use of ARCHER for running the simulations and the STFC Hartree Centre for post-processing the data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, W., Lu, L., Fang, J. et al. Large-Scale Streamwise Vortices in Turbulent Channel Flow Induced by Active Wall Actuations. Flow Turbulence Combust 100, 651–673 (2018). https://doi.org/10.1007/s10494-017-9871-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-017-9871-5

Keywords

Navigation