Log in

Modelling two-layer nanofluid flow in a micro-channel with electro-osmotic effects by means of Buongiorno’s mode

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

A fully developed steady immiscible flow of nanofluid in a two-layer microchannel is studied in the presence of electro-kinetic effects. Buongiorno’s model is employed for describing the behavior of nanofluids. Different from the previous studies on two-layer channel flow of a nanofluid, the present paper introduces the flux conservation conditions for the nanoparticle volume fraction field, which makes this work new and unique, and it is in coincidence with practical observations. The governing equations are reduced into a group of ordinary differential equations via appropriate similarity transformations. The highly accurate analytical approximations are obtained. Important physical quantities and total entropy generation are analyzed and discussed. A comparison is made to determine the significance of electrical double layer (EDL) effects in the presence of an external electric field. It is found that the Brownian diffusion, the thermophoresis diffusion, and the viscosity have significant effect on altering the flow behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Br1, Br2 :

Brinkman numbers

B 0 :

magnetic field in z-direction

\({\overline{C}_{1}},\;{\overline{C}_{2}}\) :

nano-particle volume fractions

C 0 :

reference nano-particle volume fraction

C w :

nano-particle volume fraction on the micro-channel walls

Cf1, Cf2 :

local skin friction coefficients

(cp)f, (cp)s :

specific heat of fluid and nanoparticles

DB1, DB2 :

Brownian diffusion coefficients

Dt1, Dt2 :

thermophoretic diffusion coefficients

e :

charge of a proton

E(m):

error for homotopy analysis method (HAM) computation order m

E s :

non-dimensional external electric field parameter

Ex, Ey :

electric field in x- and y-directions respectively

F1, F2 :

electrical body forces from uniform electromagnetic field

H :

total distance between the boundaries of the channel

H1, H2 :

distances of two-layer fluid in Regions I and II

h1, h2 :

non-dimensional distances of Regions I and II

Ha1, Ha2 :

Hartman numbers

k1, k2 :

Debye-Hückel parameters

k B :

Boltzmann constant

\(k_{\text{f}_{1}},\;k_{\text{f}_{2}}\) :

thermal conductivities of the fluid

kf:

ratio of thermal conductivities of the fluid

L :

length of the micro-channel

M D :

dimensionless mass diffusion parameter

n 0 :

the bulk ionic concentration

NB1,NB2 :

Brownian motion parameters

Nt1,Nt2 :

thermophoresis parameters

Nu1,Nu2 :

local Nusselt numbers

̄p :

pressure

P1, P2 :

non-dimensional pressure gradient parameters

qw1, qw2 :

wall heat fluxes on the two wall of the channel

R D :

universal gas constant

Re1,Re2 :

Reynolds numbers

s1, s2 :

non-dimensional nano-particle volume fractions

Se1, Se2 :

strengths of lateral direction electric field

\(S_G^1, \; S_G^2\) :

entropy generated in the respective channels

S total :

total entropy generated in the channel

S r :

ratio of entropy generated in Region I and Region II

̄T1, ̄T2 :

temperatures

T 0 :

reference temperature

T w :

temperature on the micro-channel wall surface

:

absolute temperature

u1, u2 :

non-dimensional velocities of the fluid

Ua1,Ua2 :

average velocities of the fluid

̄u1, ̄u2 :

x-component of the fluid velocities

W :

width of the micro-channel

̄x, ̄y, ̄z :

Cartesian coordinates

:

the valences of ions

α1, β2 :

thermal diffusivities of the nanofluid

ε :

ratio of dielectric constants of the medium

ε1, ε2 :

dielectric constants of the medium

ε 0 :

permittivity of vacuum

η :

non-dimensional spatial variable

Г1, Г2 :

non-dimensional pressure gradient parameters

k1, k2 :

electro-osmotic parameters

Ʌ 0 :

dimensionless reference nanoparticle parameter

λ N :

ratio of the respective quantity N such that N ∈ ε, kf, μ, σ, DB,Dt, α, τ, ρ

μ1, μ2 :

dynamic viscosities of the fluid

θ 0 :

dimensionless reference temperature parameter

θ1, θ2 :

non-dimensional temperature distributions

(ρ1)f, (ρ2)s:

densities of the fluids or nanoparticles

ρ ̄e1, ρ ̄e2 :

charge densities

τw1, τw2 :

shear stresses on the wall of the micro-channel

ϕ̄1, ϕ̄2 :

electrostatic potentials

ϕ1, ϕ2 :

non-dimensional electrostatic potentials

ζ1, ζ2 :

ratios of Joule heating to the applied temperature differences between wall and ambient fluid

ζ1, ζ2 :

non-dimensional zeta potentials

ζ̄1, ζ̄2 :

zeta potentials

1, 2:

refer to quantities for Regions I and II

f, s:

refer to the fluid and solid particles

w:

physical quantities on the micro-channel wall

References

  1. GRAVESEN, P., BRANEBJERG, J., and JENSEN, O. S. Microfluidics —- a review. Journal of Micromechanics and Microengineering, 3(4), 168–182 (1993)

    Article  Google Scholar 

  2. BECKER, H. and GÄRTNER, C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis, 21(1), 12–26 (2000)

    Article  Google Scholar 

  3. ZIAIE, B., BALDI, A., LEI, M., GU, Y., and SIEGEL, R. A. Hard and soft micromachining for BioMEMS: review of techniques and examples of applications in microfluidics and drug delivery. Advanced Drug Delivery Reviews, 56(2), 145–172 (2004)

    Article  Google Scholar 

  4. NGUYEN, N. T. and WU, Z. Micromixers — a review. Journal of Micromechanics and Micro-engineering, 15(2), R1–R16 (2004)

    Google Scholar 

  5. OHNO, K. I., TACHIKAWA, K., and MANZ, A. Microfluidics: applications for analytical purposes in chemistry and biochemistry. Electrophoresis, 29(22), 4443–4453 (2008)

    Article  Google Scholar 

  6. MAXWELL, J. C. A Treatise on Electricity and Magnetism, Clarendon Press, Oxford (1873)

    MATH  Google Scholar 

  7. CHOI, S. U. and EASTMAN, J. A. Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress and Exposion, 12–17 (1995)

    Google Scholar 

  8. EASTMAN, J. A., CHOI, S. U. S., LI, S., YU, W., and THOMPSON, L. J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letters, 78(6), 718–720 (2001)

    Article  Google Scholar 

  9. XUAN, Y. and LI, Q. Investigation on convective heat transfer and flow features of nanofluids. Journal of Heat Transfer, 125(1), 151–155 (2003)

    Article  Google Scholar 

  10. HERIS, S. Z., ETEMAD, S. G., and ESFAHANY, M. N. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer, 33(4), 529–535 (2006)

    Article  Google Scholar 

  11. WILLIAMS, W., BUONGIORNO, J., and HU, L. W. Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes. Journal of Heat Transfer, 130(4), 042412 (2008)

    Google Scholar 

  12. KUZNETSOV, A. V. and NIELD, D. A. Natural convective boundary-layer flow of a nanofluid past a vertical plate. International Journal of Thermal Sciences, 49(2), 243–247 (2010)

    Article  Google Scholar 

  13. WANG, X. J., LI, X. F., XU, Y. H., and ZHU, D. S. Thermal energy storage characteristics of Cu-H2O nanofluids. Energy, 78, 212–217 (2014)

    Article  Google Scholar 

  14. MANIKANDAN, S. and RAJAN, K. S. MgO-therminol 55 nanofluids for efficient energy management: analysis of transient heat transfer performance. Energy, 88, 408–416 (2015)

    Article  Google Scholar 

  15. KARIMIPOUR, A., NEZHAD, A. H., DORAZIO, A., ESFE, M. H., SAFAEI, M. R., and SHI-RANI, E. Simulation of copper-water nanofluid in a microchannel in slip flow regime using the lattice Boltzmann method. European Journal of Mechanics-B/Fluids, 49, 89–99 (2015)

    Article  Google Scholar 

  16. HUNTER, R. J. Zeta Potential in Colloid Science: Principles and Applications, Academic Press, Harcour Brace Jovanovich (2013)

    Google Scholar 

  17. MALA, G. M., LI, D., and DALE, J. D. Heat transfer and fluid flow in microchannels. International Journal of Heat and Mass Transfer, 40, 3079–3088 (1997)

    Article  MATH  Google Scholar 

  18. MALA, G. M. and LI, D. Flow characteristics of water in microtubes. International Journal of Heat and Fluid Flow, 20(2), 142–148 (1999)

    Article  Google Scholar 

  19. REN, L. Q., QU, W. L., and LI, D. Q. Interfacial electrokinetic effects on liquid flow in microchannels. International Journal of Heat and Mass Transfer, 44(16), 3125–3134 (2001)

    Article  MATH  Google Scholar 

  20. DARABI, J. and EKULA, K. Development of a chip-integrated micro cooling device. Microelectronics Journal, 34(11), 1067–1074 (2003)

    Article  Google Scholar 

  21. DONALDSON, L. Small and powerful nuclear battery developed. Materials Today, 12(11), 10–10 (2009)

    Google Scholar 

  22. WANG, B. X. and PENG, X. F. Experimental investigation on liquid forced-convection heat transfer through microchannels. International Journal of Heat and Mass Transfer, 37, 73–82 (1994)

    Article  Google Scholar 

  23. GUO, Z. Y. and LI, Z. X. Size effect on single-phase channel flow and heat transfer at microscale. International Journal of Heat and Fluid Flow, 24(3), 284–298 (2003)

    Article  Google Scholar 

  24. REN, C. L. and LI, D. Improved understanding of the effect of electrical double layer on pressure-driven flow in microchannels. Analytica Chimica Acta, 531(1), 15–23 (2005)

    Article  MathSciNet  Google Scholar 

  25. YOU, X. Y. and GUO, L. X. Analysis of EDL effects on the flow and flow stability in microchannels. Journal of Hydrodynamics, 22(5), 725–731 (2010)

    Article  Google Scholar 

  26. JING, D., PAN, Y., and WANG, X. Joule heating, viscous dissipation and convective heat transfer of pressure-driven flow in a microchannel with surface charge-dependent slip. International Journal of Heat and Mass Transfer, 108, 1305–1313 (2017)

    Article  Google Scholar 

  27. SRINIVAS, B. Electroosmotic flow of a power law fluid in an elliptic microchannel. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 492, 144–151 (2016)

    Article  Google Scholar 

  28. QI, C. and NG, C. O. Electroosmotic flow of a two-layer fluid in a slit channel with gradually varying wall shape and zeta potential. International Journal of Heat and Mass Transfer, 119, 52–64 (2018)

    Article  Google Scholar 

  29. ZHENG, J. and JIAN, Y. Rotating electroosmotic flow of two-layer fluids through a microparallel channel. International Journal of Mechanical Sciences, 136, 293–302 (2018)

    Article  Google Scholar 

  30. TAO, L. N. On combined free and forced convection in channels. Journal of Heat Transfer, 82(3), 233–238 (1960)

    Article  Google Scholar 

  31. AUNG, W. and WORKU, G. Develo** flow and flow reversal in a vertical channel with asymmetric wall temperatures. Journal of Heat Transfer, 108(2), 299–304 (1986)

    Article  Google Scholar 

  32. KUBAN, P., DASGUPTA, P. K., and MORRIS, K. A. Microscale continuous ion exchanger. Analytical Chemistry, 74(21), 5667–5675 (2002)

    Article  Google Scholar 

  33. KAMHOLZ, A. E., WEIGL, B. H., FINLAYSON, B. A., and YAGER, P. Quantitative analysis of molecular interaction in a microfluidic channel: the T-sensor. Analytical Chemistry, 71(23), 5340–5347 (1999)

    Article  Google Scholar 

  34. WEIGL, B. H., BARDELL, R. L., KESLER, N., and MORRIS, C. J. Lab-on-a-chip sample preparation using laminar fluid diffusion interfaces-computational fluid dynamics model results and fluidic verification experiments. Fresenius’ Journal of Analytical Chemistry, 371(2), 97–105 (2001)

    Article  Google Scholar 

  35. BRASK, A., GORANOVIC, G., and BRUUS, H. Electroosmotic Pum** of Nonconducting Liquids by Viscous Drag from a Secondary Conducting Liquid, Nanotech, 190–193 (2003)

    Google Scholar 

  36. GAO, Y., WONG, T. N., YANG, C., and OOI, K. T. Two-fluid electroosmotic flow in microchannels. Journal of Colloid and Interface Science, 284(1), 306–314 (2005)

    Article  MATH  Google Scholar 

  37. SHANKAR, V. and SHARMA, A. Instability of the interface between thin fluid films subjected to electric fields. Journal of Colloid and Interface Science, 274(1), 294–308 (2004)

    Article  Google Scholar 

  38. VERMA, R., SHARMA, A., KARGUPTA, K., and BHAUMIK, J. Electric field induced instability and pattern formation in thin liquid films. Langmuir, 21(8), 3710–3721 (2005)

    Article  Google Scholar 

  39. GAO, Y., WANG, C., WONG, T. N., YANG, C., NGUYEN, N. T., and OOI, K. T. Electro-osmotic control of the interface position of two-liquid flow through a microchannel. Journal of Micromechanics and Microengineering, 17(2), 358–366 (2007)

    Article  Google Scholar 

  40. GAIKWAD, H., BASU, D. N., and MONDAL, P. K. Electroosmotic transport of immiscible binary system with a layer of non-conducting fluid under interfacial slip: the role applied pressure gradient. Electrophoresis, 37(14), 1998–2009 (2016)

    Article  Google Scholar 

  41. GAIKWAD, H. S., BASU, D. N., and MONDAL, P. K. Slip driven micro-pum** of binary system with a layer of non-conducting fluid under electrical double layer phenomenon. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 518, 166–172 (2017)

    Article  Google Scholar 

  42. XIE, Z. Y. and JIAN, Y. J. Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through microparallel channels. Energy, 139, 1080–1093 (2017)

    Article  Google Scholar 

  43. ZHAO, Q., XU, H., and TAO, L. Nanofluid flow and heat transfer in a microchannel with interfacial electrokinetic effects. International Journal of Heat and Mass Transfer, 124, 158–167 (2018)

    Article  Google Scholar 

  44. BEJAN, A. A study of entropy generation in fundamental convective heat transfer. Journal of Heat Transfer, 101(4), 718–725 (1979)

    Article  Google Scholar 

  45. BEJAN, A. Second law analysis in heat transfer. Energy, 5(8-9), 720–732 (1980)

    Article  Google Scholar 

  46. ABBASSI, H. Entropy generation analysis in a uniformly heated microchannel heat sink. Energy, 32(10), 1932–1947 (2007)

    Article  Google Scholar 

  47. MAKINDE, O. D. Entropy-generation analysis for variable-viscosity channel flow with nonuniform wall temperature. Applied Energy, 85(5), 384–393 (2008)

    Article  Google Scholar 

  48. XU, H., RAEES, A., and XU, X. H. Entropy generation of nanofluid flow and heat transfer driven through a paralleled microchannel. Canadian Journal of Physics, 97(6), 678–691 (2018)

    Article  Google Scholar 

  49. BUONGIORNO, J. Convective transport in nanofluids. Journal of Heat Transfer, 128(3), 240–250 (2006)

    Article  Google Scholar 

  50. FAROOQ, U. and LIN, Z. L. Nonlinear heat transfer in a two-layer flow with nanofluids by OHAM. Journal of Heat Transfer, 136(2), 021702 (2014)

    Google Scholar 

  51. FAROOQ, U., HAYAT, T., ALSAEDI, A., and LIAO, S. J. Heat and mass transfer of two-layer flows of third-grade nano-fluids in a vertical channel. Applied Mathematics and Computation, 242, 528–540 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  52. LIAO, S. J. Homotopy Analysis Method in Nonlinear Differential Equations, Higher Education Press, Bei**g, 153–165 (2012)

    Book  Google Scholar 

  53. DAUENHAUER, E. C. and MAJDALANI, J. Exact self-similarity solution of the Navier-Stokes equations for a porous channel with orthogonally moving walls. Physics of Fluids, 151, 1485–1495 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  54. SUN, Q. and POP, I. Free convection in a triangle cavity filled with a porous medium saturated with nanofluids with flush mounted heater on the wall. International Journal of Thermal Sciences, 50(11), 2141–2153 (2011)

    Article  Google Scholar 

  55. NGUYEN, N. T. Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale microfluid. Microfluids and Nanofluids, 12, 1–16 (2012)

    Article  Google Scholar 

  56. SARKAR, S., GANGULY, S., and CHAKRABORTY, S. Influence of combined electromagneto-hydrodynamics on microchannel flow with electrokinetic effect and interfacial slip. Microfluidics and Nanofluidics, 21, 1–16 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Xu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 11872241)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niazi, M.D.K., Xu, H. Modelling two-layer nanofluid flow in a micro-channel with electro-osmotic effects by means of Buongiorno’s mode. Appl. Math. Mech.-Engl. Ed. 41, 83–104 (2020). https://doi.org/10.1007/s10483-020-2558-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-020-2558-7

Key words

Chinese Library Classification

2010 Mathematics Subject Classification

Navigation