Log in

A class of coupled nonlinear Schrödinger equations: Painlevé property, exact solutions, and application to atmospheric gravity waves

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The Painlevé integrability and exact solutions to a coupled nonlinear Schrödinger (CNLS) equation applied in atmospheric dynamics are discussed. Some parametric restrictions of the CNLS equation are given to pass the Painlevé test. Twenty periodic cnoidal wave solutions are obtained by applying the rational expansions of fundamental Jacobi elliptic functions. The exact solutions to the CNLS equation are used to explain the generation and propagation of atmospheric gravity waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang, F., Tang, X. Y., Lou, S. Y., and Lu, C. H. Evolution of dipole-type blocking life cycle: analytical diagnoses and observations. Journal of the Atmospheric Sciences 64(1), 52–73 (2007)

    Article  Google Scholar 

  2. Li, Z. L. Solitary wave and periodic wave solutions for the thermally forced gravity waves in atmosphere. Journal of Physics A: Mathematical and Theoretical 41(14), 145206 (2008)

    Article  MathSciNet  Google Scholar 

  3. Li, Z. L. Application of higher-order KdV-mKdV model with higher-degree nonlinear terms to gravity waves in atmosphere. Chinese Physics B 18(10), 4074–4082 (2009)

    Article  Google Scholar 

  4. Jacobi, C., Gavrilov, N. M., and Kurschner, D. Gravity wave climatology and trends in the mesosphere/lower thermosphere region deduced from low-frequency drift measurements 1984–2003 (52.1°N, 13.2°E). Journal of Atmospheric and Solar-Terrestrial Physics 68(17), 1913–1923 (2006)

    Article  Google Scholar 

  5. Li, Z. L. and Fu, G. Topographic effects on polar low and tropical cyclone development in simple theoretical model. Applied Mathematics and Mechanics (English Edition) 30(10), 1271–1282 (2009) DOI 10.1007/s10483-009-1007-x

    Article  MATH  MathSciNet  Google Scholar 

  6. Liu, P. and Gao, X. N. Symmetry analysis of nonlinear incompressible non-hydrostatic Boussinesq equations. Communications in Theoretical Physics 53(4), 609–614 (2010)

    Article  Google Scholar 

  7. Zhu, L. H., Zhou, W. C., and Zou, L. J. Nonlinear gravitational waves and their interactions in a vertical shearing flow (in Chinese). Journal of Nan**g Institute of Meteorology 27(3), 405–412 (2004)

    Google Scholar 

  8. Benney, D. J. and Newell, A. C. The propagation of nonlinear wave envelopes. Journal of Mathematical Physics 46(2), 133–139 (1967)

    MATH  MathSciNet  Google Scholar 

  9. Tan, B. K. Collision interactions of envelope Rossby solitons in a barotropic atmosphere. Journal of the Atmospheric Sciences 53(11), 1604–1616 (1996)

    Article  MathSciNet  Google Scholar 

  10. Tang, X. Y. and Shukla, P. K. Solution of the one-dimensional spatially inhomogeneous cubicquintic nonlinear Schrödinger equation with an external potential. Physics Review A 76(1), 013612 (2007)

    Article  MathSciNet  Google Scholar 

  11. Pulov, V. I. Solutions and laws of conservation for coupled nonlinear Schrödinger equations: Lie group analysis. Physical Review E 57(3), 3468–3477 (1998)

    Article  MathSciNet  Google Scholar 

  12. Tan, B. K. and Ying, D. P. Propagation of envelope solitons in baroclinic atmosphere. Advances in Atmospheric Sciences 12(4), 439–448 (1995)

    Article  Google Scholar 

  13. Mattea, R. T. and Gordon, E. S. Evolution of solitary marginal disturbances in baroclinic frontal geostrophic dynamics with dissipation and time-varying background flow. Proceedings of the Royal Society A 463, 1749–1769 (2007)

    Article  Google Scholar 

  14. Porubov, A. V. and Parker, D. F. Some general periodic solutions to coupled nonlinear Schrödinger equations. Wave Motion 29(2), 97–109 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sahadevan, R., Tamizhmani, K. M., and Lakshmanan, M. Painlevé analysis and integrability of coupled non-linear Schrödinger equations. Journal of Physics A 19(10), 1783–1791 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Radhakrishan, R., Sahadevan, R., and Lakshmanan, M. Integrability and singularity structure of coupled nonlinear Schrödinger equations. Chaos, Solitons and Fractals 5(12), 2315–2327 (1995)

    Article  MathSciNet  Google Scholar 

  17. Kanna, T. and Lakshmanan, M. Exact soliton solutions of coupled nonlinear Schrödinger equations: shape-changing collisions, logic gates, and partially coherent solitons. Physical Review E 67(7), 046617 (2003)

    Article  Google Scholar 

  18. Liu, P. and Lou, S. Y. Coupled nonlinear Schrödinger equation: symmetries and exact solutions Communications in Theoretical Physics 51(1), 27–34 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Painlevé, P. Sur les équations différentielles du premier ordre. C. R. Acas. Soc. Paris 107, 221–224 (1888)

    Google Scholar 

  20. Ablowitz, M. J., Ramani, A., and Segur, H. A connection between nonlinear evolution equations and ordinary differential equations of P-type. Journal of Mathematical Physics 21(5), 1006–1015 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  21. Weiss, J., Tabor, M., and Carnevale, G. The Painlevé property for partial differential equations. Journal of Mathematical Physics 24(3), 522–526 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jimbo, M., Kruskal, M. D., and Miwa, T. Painlevé test for self-dual Yang-mills equation. Physics Letters A 92(2), 59–60 (1982)

    Article  MathSciNet  Google Scholar 

  23. Conte, R. Invariant Painlevé analysis of partial differential equations. Physics Letters A 140(7–8), 383–390 (1989)

    Article  MathSciNet  Google Scholar 

  24. Lou, S. Y. Extended Painlevé expansion, nonstand truncation and special reductions of nonlinear evolution equations. Zeitschrift für Naturforschung A 53(5), 251–258 (1998)

    Google Scholar 

  25. Liu, P. and Lou, S. Y. Lie point symmetries and exact solutions of the coupled volterra system. Chinese Physics Letters 27(2), 020202 (2010)

    Article  Google Scholar 

  26. Liu, P. and Lou, S. Y. A (2+1)-dimensional displacement shallow water wave system. Chinese Physics Letters 25(9), 3311–3314 (2008)

    Article  Google Scholar 

  27. Liu, S. K., Fu, Z. T., Liu, S. D., and Zhao, Q. A simple fast method in finding particular solutions of some nonlinear PDE. Applied Mathematics and Mechanics (English Edition) 22(3), 326–331 (2001) DOI 10.1007/BF02437971

    Article  MATH  MathSciNet  Google Scholar 

  28. Xu, X. H. and Ding, Y. H. Solitary gravity wave in mesoscale atmospheric motion (in Chinese). Scientia Atmospherica Sinica 15(4), 58–68 (1991)

    Google Scholar 

  29. Shou, S. W., Li, S. S., and Yao, X. P. Mesoscale Meteorology (in Chinese), China Meteorological Press, Bei**g (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ** Liu  (刘 萍).

Additional information

Communicated by Zhe-wei ZHOU

Project supported by the National Natural Science Foundation of China (Nos. 10735030 and 40775069), the Natural Science Foundation of Guangdong Province of China (No. 10452840301004616), and the Scientific Research Foundation for the Doctors of University of Electronic Science and Technology of China Zhongshan Institute (No. 408YKQ09)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, P., Li, Zl. & Lou, Sy. A class of coupled nonlinear Schrödinger equations: Painlevé property, exact solutions, and application to atmospheric gravity waves. Appl. Math. Mech.-Engl. Ed. 31, 1383–1404 (2010). https://doi.org/10.1007/s10483-010-1370-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-010-1370-6

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation