Log in

Supercritical as well as subcritical Hopf bifurcation in nonlinear flutter systems

  • Published:
Applied Mathematics and Mechanics Aims and scope Submit manuscript

Abstract

The Hopf bifurcations of an airfoil flutter system with a cubic nonlinearity are investigated, with the flow speed as the bifurcation parameter. The center manifold theory and complex normal form method are used to obtain the bifurcation equation. Interestingly, for a certain linear pitching stiffness the Hopf bifurcation is both supercritical and subcritical. It is found, mathematically, this is caused by the fact that one coefficient in the bifurcation equation does not contain the first power of the bifurcation parameter. The solutions of the bifurcation equation are validated by the equivalent linearization method and incremental harmonic balance method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

h :

plunge displacement of airfoil

α :

pitch displacement of airfoil

t :

non-dimensional time

Q :

generalized air speed, bifurcation parameter

Q f :

flutter critical point

Q(k 0):

bifurcation point of Eq. (1) corresponding to k 0

ɛ :

the parameter defined as ɛ = QQ f

κ 0 :

linear pitching stiffness

e 2 :

coefficient of nonlinear pitching stiffness

References

  1. Lee B H K, Price S J, Wong Y S. Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos[J]. Progress Aerosp Sci, 1999, 35(3):205–344.

    Article  Google Scholar 

  2. Liu J K, Zhao L C. Bifurcation analysis of airfoil in incompressible flow[J]. J Sound Vib, 1992, 154(1):117–124.

    Article  MATH  Google Scholar 

  3. Shahrzad P, Mahzoon M. Limit cycle flutter of airfoils in steady and unsteady flows[J]. J Sound Vib, 2002, 256(2):213–225.

    Article  Google Scholar 

  4. Yang Y R. KBM method of analyzing limit cycle flutter of a wing with an external store and comparison with wind tunnel test[J]. J Sound Vib, 1995, 187(2):271–280.

    Article  Google Scholar 

  5. Liu L P, Dowell E H. The secondary bifurcation of an aeroelastic airfoil motion: effect of high harmonics[J]. Nonlinear Dyn, 2004, 37(1):31–49.

    Article  MATH  MathSciNet  Google Scholar 

  6. Cai M, Liu J K, Li J. Incremental harmonic balance method for airfoil flutter with multiple strong nonlinearities[J]. Appl Math Mech-Engl Ed, 2006, 27(7):953–958.

    Article  MATH  Google Scholar 

  7. Kousen K A, Bendiksen O O. Limit cycle phenomena in computational transonic aeroelasticity[J]. J Aircraft, 1994, 31(6):1257–1263.

    Article  Google Scholar 

  8. Liu J K, Zhao L C, Fang T. Bifurcation point analysis of airfoil flutter with structural nonlinearity[ M]. In: Advances in Nonlinear Dynamics in China-Theory and Practice, Chapter 3, Lisse, Netherland: Swets Zeitlinger Publishers, 2002.

    Google Scholar 

  9. Lee B H K, Gong L, Wong Y S. Analysis and computation of nonlinear dynamic response of a two-degree-of-freedom system and its application in aeroelasticity[J]. J of Fluids Struct, 1997, 11(3):225–246.

    Article  Google Scholar 

  10. Liu L, Wong Y S, Lee B H K. Application of the center manifold theory in nonlinear aeroelasticity[J]. J Sound Vib, 2000, 234(4):641–659.

    Article  MathSciNet  Google Scholar 

  11. Coller B D, Chamara P A. Structural non-linearities and the nature of the classic flutter instability[ J]. J Sound Vib, 2004, 277(4/5):711–739.

    Article  MathSciNet  Google Scholar 

  12. Bi Q S, Chen Y S. Bifurcation analysis of a double pendulum with internal resonance[J]. Appl Math Mech-Engl Ed, 2000, 21(3):255–264.

    Article  MATH  Google Scholar 

  13. Ye R S. A new approach for the computation of Hopf bifurcation points[J]. Appl Math Mech-Engl Ed, 2000, 21(11):1300–1307.

    Article  MATH  Google Scholar 

  14. Wei J J, Zhang C R, Li X L. Bifurcation in two-dimensional neural network model with delay[J]. Appl Math Mech-Engl Ed, 2005, 26(2):210–217.

    Article  MathSciNet  MATH  Google Scholar 

  15. Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems, and bifurcation of vector fields[M]. New York: Springer-Verlag, 1983.

    Google Scholar 

  16. Carr J. Applications of center manifold theory[M]. New York: Springer-Verlag, Berlin: Heidelberg, 1983.

    Google Scholar 

  17. Leung A Y T, Zhang Q C. Complex normal form for strongly nonlinear vibration systems exemplified by Duffing-van der Pol equation[J]. J Sound Vib, 1997, 213(5):907–914.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ji-ke  (刘济科).

Additional information

Communicated by WANG Biao

Project supported by the National Natural Science Foundation of China (No. 10772202), the Doctoral Foundation of Ministry of Education of China (No. 20050558032), and the Natural Science Foundation of Guangdong Province (Nos. 07003680 and 05003295)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Ym., Liu, Jk. Supercritical as well as subcritical Hopf bifurcation in nonlinear flutter systems. Appl. Math. Mech.-Engl. Ed. 29, 199–206 (2008). https://doi.org/10.1007/s10483-008-0207-x

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10483-008-0207-x

Key words

Chinese Library Classification

2000 Mathematics Subject Classification

Navigation