Log in

Identification and characterisation of xylanolytic yeasts isolated from decaying wood and sugarcane bagasse in Brazil

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

In this study, yeasts associated with lignocellulosic materials in Brazil, including decaying wood and sugarcane bagasse, were isolated, and their ability to produce xylanolytic enzymes was investigated. A total of 358 yeast isolates were obtained, with 198 strains isolated from decaying wood and 160 strains isolated from decaying sugarcane bagasse samples. Seventy-five isolates possessed xylanase activity in solid medium and were identified as belonging to nine species: Candida intermedia, C. tropicalis, Meyerozyma guilliermondii, Scheffersomyces shehatae, Sugiyamaella smithiae, Cryptococcus diffluens, Cr. heveanensis, Cr. laurentii and Trichosporon mycotoxinivorans. Twenty-one isolates were further screened for total xylanase activity in liquid medium with xylan, and five xylanolytic yeasts were selected for further characterization, which included quantitative analysis of growth in xylan and xylose and xylanase and β-d-xylosidase activities. The yeasts showing the highest growth rate and cell density in xylan, Cr. laurentii UFMG-HB-48, Su. smithiae UFMG-HM-80.1 and Sc. shehatae UFMG-HM-9.1a, were, simultaneously, those exhibiting higher xylanase activity. Xylan induced the highest level of (extracellular) xylanase activity in Cr. laurentii UFMG-HB-48 and the highest level of (intracellular, extracellular and membrane-associated) β-d-xylosidase activity in Su. smithiae UFMG-HM-80.1. Also, significant β-d-xylosidase levels were detected in xylan-induced cultures of Cr. laurentii UFMG-HB-48 and Sc. shehatae UFMG-HM-9.1a, mainly in extracellular and intracellular spaces, respectively. Under xylose induction, Cr. laurentii UFMG-HB-48 showed the highest intracellular β-d-xylosidase activity among all the yeast tested. C. tropicalis UFMG-HB 93a showed its higher (intracellular) β-d-xylosidase activity under xylose induction and higher at 30 °C than at 50 °C. This study revealed different xylanolytic abilities and strategies in yeasts to metabolise xylan and/or its hydrolysis products (xylo-oligosaccharides and xylose). Xylanolytic yeasts are able to secrete xylanolytic enzymes mainly when induced by xylan and present different strategies (intra- and/or extracellular hydrolysis) for the metabolism of xylo-oligosaccharides. Some of the unique xylanolytic traits identified here should be further explored for their applicability in specific biotechnological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bailey JM, Biely P, Pountanen K (1992) Inter-laboratory testing of methods for assay of xylanases activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  • Baldrian P, Valaskova V (2008) Degradation of cellulose by basidiomycetous fungi. FEMS Microbiol Rev 32:501–521

    Article  CAS  PubMed  Google Scholar 

  • Barbosa AC, Cadete RM, Gomes FCO, Lachance M-A, Rosa CA (2009) Candida materiae sp. nov. a yeast species isolated from rotting wood in the Atlantic Rain Forest. Int J Syst Evol Microbiol 59:2104–2106

    Article  PubMed  Google Scholar 

  • Basaran P, Hang YD (2000) Purification and characterization on acetyl esterase from Candida guilliermondii. Lett Appl Microbiol 30:167–171

    Article  CAS  PubMed  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  PubMed  Google Scholar 

  • Bhadra B, Rao RS, Singh PK, Sarkar PK, Shivaji S (2008) Yeasts and yeast-like fungi associated with tree bark: diversity and identification of yeasts producing extracellular endoxylanases. Curr Microbiol 56:489–494

    Article  CAS  PubMed  Google Scholar 

  • Biely P, Kremnický L (1998) Yeasts and their enzyme systems degrading cellulose, hemicelluloses and pectin. Food Technol Biotechnol 36:305–312

    CAS  Google Scholar 

  • Biely P, Vrsanská M, Krátký Z (1980) Xylan-degrading enzymes of the yeast Cryptococcus albidus. Identification and cellular localization. Eur J Biochem 108:313–321

    Article  CAS  PubMed  Google Scholar 

  • Cadete RM, Santos RO, Melo MA, Mouro A, Gonçalves DL, Stambuk BU, Gomes FCO, Lachance MA, Rosa CA (2009) Spathaspora arborariae sp. nov., a d-xylose-fermenting yeast species isolated from rotting wood in Brazil. FEMS Yeast Res 9:1338–1342

    Article  CAS  PubMed  Google Scholar 

  • Cadete RM, Melo M-A, Dussán KJ, Rodrigues RCLB, Silva SS, Zilli JE, Vital MJS, Gomes FCO, Lachance M-A, Rosa CA (2012) Diversity and physiological characterization of d-xylose fermenting yeast isolates from the brazilian Amazonian forest. PLoS One 7:1–11

    Article  Google Scholar 

  • Carrasco M, Rozas JM, Barahona S, Alcaíno J, Cifuentes V, Baeza M (2012) Diversity and extracellular enzymatic activities of yeasts isolated from King George Island, the sub-Antarctic region. BMC Microbiol 12:251

    Article  PubMed Central  PubMed  Google Scholar 

  • Chavez R, Bull P, Eyzaguirre J (2006) The xylanolytic enzyme system from the genus Penicillium. J Biotechnol 23:413–433

    Article  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29(1):3–23

    Article  CAS  PubMed  Google Scholar 

  • De Barros LM, Soden A, Henschke PA, Langridge P (1996) PCR differentiation of commercial yeasts strains using intron splice site primers. Appl Environ Microbiol 62:4514–4520

    Google Scholar 

  • Ebringevorá A, Hromadkova Z, Heinze T (2005) Hemicellulose. Adv Polym Sci 186:1–67

    Article  Google Scholar 

  • Fall R, Phelps P, Spindler D (1984) Bioconversion of xylan to triglycerides by oil-rich yeasts. Appl Environ Microbiol 47:1130–1134

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fengxia L, Mei L, Zhaoxin L, **aomei B, Haizhen Z, Wang Y (2008) Purification and characterization of xylanase from Aspergillus ficuum AF-98. Biores Technol 99:5038–5941

    Google Scholar 

  • Fonseca C, Romão R, Rodrigues de Souza H, Hahn-Hägerdal B, Spencer-Martins I (2007a) l-Arabinose transport and catabolism in yeast. FEBS J 274(14):3589–3600

    Article  CAS  PubMed  Google Scholar 

  • Fonseca C, Spencer-Martins I, Hahn-Hägerdal B (2007b) l-Arabinose metabolism in Candida arabinofermentans PYCC 5603T and Pichia guilliermondii PYCC 3012: influence of sugar and oxygen on product formation. Appl Microbiol Biotechnol 75:303–310

    Article  CAS  PubMed  Google Scholar 

  • Fonseca C, Olofsson K, Ferreira C, Runquist D, Fonseca LL, Hahn-Hägerdal B, Líden G (2011a) The glucose/xylose facilitator Gxf1 from Candida intermedia expressed in a xylose-fermenting industrial strain of Saccharomyces cerevisae increases xylose uptake in SSCF of wheat straw. Enzyme Microb Technol 48:518–525

    Article  CAS  PubMed  Google Scholar 

  • Fonseca A, Boekhout T, Fell JW (2011b) Cryptococcus Vuillemin (1901). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 1661–1738

    Chapter  Google Scholar 

  • Fujita Y, Ito J, Ueda M, Fukuda H, Kondo A (2004) Synergistic saccharification, and direct fermentation to ethanol, of amorphous cellulose by use of an engineered yeast strain codisplaying three types of cellulolytic enzyme. Appl Environ Microbiol 70:1207–1212

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gárdonyi M, Österberg M, Rodrigues C, Spencer-Martins I, Hahn-Hägerdal B (2003) High capacity xylose transport in Candida intermedia PYCC 4715. FEMS Yeast Res 3:45–52

    PubMed  Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Lukasik R (2010) Hemicelluloses for fuel ethanol: a review. Biores Technol 101:4775–4800

    Article  Google Scholar 

  • González AE, Martínez AT, Almendro G, Grinbergs J (1989) A study of yeasts during the delignification and fungal transformation of wood into cattle feed in Chilean rain forest. Antonie Van Leeuwenhoek 55:221–236

    Article  PubMed  Google Scholar 

  • Granström T, Aristidou AA, Leisola M (2002) Metabolic flux analysis of Candida tropicalis growing on xylose in an oxygen-limited chemostat. Metab Eng 4:248–256

    Article  PubMed  Google Scholar 

  • Gray KA, Zhao LS, Emptage M (2006) Bioethanol. Curr Opin Chem Biol 10:141–146

    Article  CAS  PubMed  Google Scholar 

  • Haltrich D, Nidetzky B, Kulbe KD, Steiner W, Zupancic S (1996) Production of fungal xylanases. Bioresour Technol 58:137–161

    Article  CAS  Google Scholar 

  • Jiménez M, Gonzalez AE, Martinez MJ, Martinez AT (1991) Screening of yeasts isolated from decayed wood for lignocellulose-degrading enzyme activities. Mycol Res 9S(11):1299–1302

    Article  Google Scholar 

  • Katahira S, Fujita Y, Mizuike A, Fukuda H, Kondo A (2004) Construction of xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol 70:5407–5414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Katz M, Hahn-Hägerdal B, Gorwa-Grauslund MF (2003) Screening of two complementary collections of Saccharomyces cerevisiae to identify enzymes involved in stereo-selective reductions of specific carbonyl compounds: an alternative to protein purification. Enzyme Microb Technol 33:163–172

    Article  CAS  Google Scholar 

  • Knob A, Terrasan CRF, Carmona EC (2010) β-Xylosidases from filamentous fungi: an overview. World J Microbiol Biotechnol 26:389–407

    Article  CAS  Google Scholar 

  • Krátký Y, Biely P (1980) Inducible β-xyloside permease as a constituent of the xylan-degrading enzyme system of the yeast Cryptococcus albidus. Eur J Biochem 112:367–373

    Article  PubMed  Google Scholar 

  • Kremnický L, Biely P (1998) Disaccharides permeases: constituents of xylanolytic and mannanolytics systems of Aureobasidium pullulans. Biochim Biophys Acta 425:560–566

    Google Scholar 

  • Kulkarni N, Shendye A, Rao M (1999) Molecular and biotechnological aspects of xylanases. FEMS Microbiol Rev 23:411–456

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Singh S, Singh OV (2008) Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. J Ind Microbiol Biotechnol 35:377–391

    Article  CAS  PubMed  Google Scholar 

  • Kurtzman CP (2011) Meyerozyma Kurtzman & Suzuki M (2010). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 621–624

    Chapter  Google Scholar 

  • Kurtzman CP, Fell JW, Boekhout T, Robert V (2011) Methods for isolation, phenotypic characterization and maintenance of yeasts. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 77–100

    Google Scholar 

  • Lachance M-A, Bowles JM, Starmer WT, Barker JSF (1999) Kodamaea kakaduensis and Candida tolerans, two new yeast species from Australian Hibiscus flowers. Can J Microbiol 45:172–177

    Article  CAS  PubMed  Google Scholar 

  • Lachance M-A, Boekhout T, Scorzetti G, Fell JW, Kurtzman CP (2011) Candida. Berkhout (1923). In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study, 5th edn. Elsevier, Amsterdam, pp 987–1278

    Chapter  Google Scholar 

  • Leathers TD (1986) Color variants of Aureobasidium pullulans overproduce xylanase with extremely high specific activity. Appl Environ Microbiol 52:1026–1030

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee H, Biely P, Latta RK, Barbosa MFS, Schneider H (1986) Utilization of xylan by yeasts and its conversion to ethanol by Pichia stipitis strains. Appl Environ Microbiol 52:320–324

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manzanares P, Ramón D, Querol A (1999) Screening of non-saccharomyces wine yeasts for the production of beta-d-xylosidase activity. Int J Food Microbiol 46:105–112

    Article  CAS  PubMed  Google Scholar 

  • Middelhoven WJ, Kurtzman CP (2007) Four novel yeast from decaying organic matter: Blastobotrys robertii sp. nov., Candida cretensis sp. nov. Antonie Van Leeuwenhoek 92:233–244

    Article  PubMed  Google Scholar 

  • Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  • Morais CG, Cadete RM, Uetanabaro APP, Rosa LH, Lachance M-A, Rosa CA (2013a) d-Xylose-fermenting and xylanase-producing yeast species from rotting wood of two Atlantic Rainforest habitats in Brazil. Fungo Genet Biol 60:19–28

    Google Scholar 

  • Morais CG, Lara CA, Marques S, Fonseca C, Lachance M-A, Rosa CA (2013b) Sugiyamaella xylanicola sp. nov., a xylan-degrading yeast species isolated from rotting-wood in Brazil. Int J Syst Evol Microbiol 63:2356–2360

    Article  CAS  PubMed  Google Scholar 

  • Özcan S, Kotter P, Ciriacy M (1991) Xylan-hydrolysing enzymes of the yeast Pichia stipitis. Appl Microbiol Biotechnol 36:190–195

    Article  Google Scholar 

  • Parachin NS, Siqueira S, de Faria FP, Torres FAG, de Moraes LMP (2009) Xylanases from Cryptococcus flavus isolate I-11: enzymatic profile, isolation and heterologous expression of CfXYN1 in Saccharomyces cerevisiae. J Mol Catal B Enzyme 59:52–57

    Article  CAS  Google Scholar 

  • Polizeli MLTM, Rizzatti ACS, Monti R, Terenzi HF, Jorge JA, Amorim DS (2005) Xylanases from fungi: properties and industrial applications. Appl Microbiol Biotechnol 67:577–591

    Article  CAS  PubMed  Google Scholar 

  • Romero AM, Mateo JJ, Maicas S (2012) Characterization of an ethanol-tolerant 1,4-β-xylosidase produced by Pichia membranifaciens. Lett Appl Microbiol 55:1–8

    Article  Google Scholar 

  • Rosa CA, Lachance MA, Teixeira LCRS, Pimenta RS, Morais PB (2007) Metschnikowia cerradonensis sp. nov., a yeast species isolated from ephemeral flowers and their nitidulid beetles in Brazil. In J Syst Evol Microbiol 57:161–165

    Article  CAS  Google Scholar 

  • Ryabova O, Vrsanska M, Kaneko S, van Zyl WH, Biely P (2009) A novel family of hemicellulolytic α-glucuronidase. FEBS Lett 583:1457–1462

    Article  CAS  PubMed  Google Scholar 

  • Satyanarayna T, Kunze G (2009) Yeast biotechnology: diversity and applications. In: Shivaji S, Prasad GS (eds) Antarctic yeasts: biodiversity and potential applications. Springer, Amsterdam, pp 3–18

    Chapter  Google Scholar 

  • Shah AR, Madamwar D (2005) Xylanase production by a newly isolated Aspergillus foetidus strain and its characterization. Process Biochem 40:1763–1771

    Article  CAS  Google Scholar 

  • Sjöström E (1993) Wood chemistry, fundamentals and applications, 2nd edn. Academic Press, London

    Google Scholar 

  • Stevens BJH, Payne J (1977) Cellulases and xylanases production by yeast of the genus Trichosporon. J Gen Microbiol 100:381–393

    Article  CAS  Google Scholar 

  • Stüttgen E, Sahm H (1982) Purification and properties of endo-1,4-β-xylanase from Trichosporon cutaneum. Appl Microbiol Biotechnol 15:93–99

    Article  Google Scholar 

  • Sun Y, Cheng JY (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores Technol 83:1–11

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Teather RM, Wood PJ (1982) Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Appl Environ Microbiol 53:41–46

    Google Scholar 

  • Thongekkaew J, Khumsap A, Chatsa-nga P (2012) Yeasts in mixed deciduous forest areas of Phujong Nayoy National Park and their ability to produce xylanase and carboxymethyl cellulose. Songklanakarin J Sci Techonol 34(2):157–163

    CAS  Google Scholar 

  • Toivola A, Yarrow D, van den Bosch E, van Dijken JP, Scheffers WA (1984) Alcoholic fermentation of d-xylose by yeasts. Appl Environ Microbiol 47:1221–1223

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Carla Lara thanks for the financial support from CAPES-PDEE (process 4716/11-6). This work was co-funded by the European Commission in the framework of EU-Brazil Project ProEthanol2G—“Integration of Biology and Engineering into an Economical and Energy-Efficient 2G Bioethanol Biorefinery” (FP7-251151), by Conselho Nacional de Desenvolvimento Cientifico e Tecnológico (CNPq, Process Nos. 551392/2010-0, 551245/2010-7 and 560715/2010-2), the Financiadora de Estudos e Projetos (FINEP, process number 2084/07), Fundação de Amparo a Pesquisa do Estado de Minas Gerais (FAPEMIG) and Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP/BIOEN/FAPEMIG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos A. Rosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lara, C.A., Santos, R.O., Cadete, R.M. et al. Identification and characterisation of xylanolytic yeasts isolated from decaying wood and sugarcane bagasse in Brazil. Antonie van Leeuwenhoek 105, 1107–1119 (2014). https://doi.org/10.1007/s10482-014-0172-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-014-0172-x

Keywords

Navigation