Log in

Imaging secondary metabolism of Streptomyces sp. Mg1 during cellular lysis and colony degradation of competing Bacillus subtilis

  • Original Paper
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Soil streptomycetes are saprotrophic bacteria that secrete numerous secondary metabolites and enzymes for extracellular functions. Many streptomycetes produce antibiotics thought to protect vegetative mycelia from competing organisms. Here we report that an organism isolated from soil, Streptomyces sp. Mg1, actively degrades colonies and causes cellular lysis of Bacillus subtilis when the organisms are cultured together. We predicted that the inhibition and degradation of B. subtilis colonies in this competition depends upon a combination of secreted factors, including small molecule metabolites and enzymes. To begin to unravel this complex competitive phenomenon, we use a MALDI imaging mass spectrometry strategy to map the positions of metabolites secreted by both organisms. In this report, we show that Streptomyces sp. Mg1 produces the macrolide antibiotic chalcomycin A, which contributes to inhibition of B. subtilis growth in combination with other, as yet unidentified factors. We suggest that efforts to understand competitive and cooperative interactions between bacterial species benefit from assays that pair living organisms and probe the complexity of metabolic exchanges between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Asolkar RN, Maskey RP, Helmke E, Laatsch H (2002) Chalcomycin B, a new macrolide antibiotic from the marine isolate Streptomyces sp. B7064. J Antibiot (Tokyo) 55:893–898

    Article  CAS  Google Scholar 

  • Bentley SD, Chater KF, Cerdeño-Tárraga A-M et al (2002) Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417:141–147

    Article  PubMed  Google Scholar 

  • Butcher RA, Schroeder FC, Fischbach MA, Straight PD, Kolter R, Walsh CT, Clardy J (2007) The identification of bacillaene, the product of the PksX megacomplex in Bacillus subtilis. Proc Natl Acad Sci USA 104:1506–1509. doi:10.1073/pnas.0610503104

    Article  PubMed  CAS  Google Scholar 

  • Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology (Reading, England) 154:1555–1569

    Article  CAS  Google Scholar 

  • Chater KF (1984) Morphological and physiological differentiation in Streptomyces. Cold Spring Harb Monogr Archiv 16:89–115. doi:10.1101/087969172.16.89

    CAS  Google Scholar 

  • Chater KF (1989) Multilevel regulation of Streptomyces differentiation. Trends genet 5:372–377

    Article  PubMed  CAS  Google Scholar 

  • Chater KF, Merrick MJ (1979) Streptomyces. In: Parish JH (ed) Developmental biology of prokaryotes. Blackwell, Oxford, pp 93–114

    Google Scholar 

  • Chater KF, Biró S, Lee KJ, Palmer T, Schrempf H (2010) The complex extracellular biology of Streptomyces. FEMS Microbiol Rev 34:171–198. doi:10.1111/j.1574-6976.2009.00206.x

    Article  PubMed  CAS  Google Scholar 

  • Chen XH, Vater J, Piel J et al (2006) Structural and functional characterization of three polyketide synthase gene clusters in Bacillus amyloliquefaciens FZB 42. J Bacteriol 188:4024–4036. doi:10.1128/JB.00052-06

    Article  PubMed  CAS  Google Scholar 

  • Chung J-K, Yoon HE, Shin HC, Choi E-Y, Byeon W-H (2009) Induction of growth phase-specific autolysis in Bacillus subtilis 168 by growth inhibitors. J Microbiol (Seoul) 47:50–59. doi:10.1007/s12275-008-0256-2

    Article  CAS  Google Scholar 

  • Esquenazi E, Coates C, Simmons L, Gonzalez D, Gerwick WH, Dorrestein PC (2008) Visualizing the spatial distribution of secondary metabolites produced by marine cyanobacteria and sponges via MALDI-TOF imaging. Mol BioSyst 4:562–570. doi:10.1039/b720018h

    Article  PubMed  CAS  Google Scholar 

  • Flardh K, Buttner M (2009) Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat Rev Microbiol 7:36–49

    Article  PubMed  Google Scholar 

  • Hofemeister J, Conrad B, Adler B et al (2004) Genetic analysis of the biosynthesis of non-ribosomal peptide- and polyketide-like antibiotics, iron uptake and biofilm formation by Bacillus subtilis A1/3. Mol Genet Genomics 272:363–378. doi:10.1007/s00438-004-1056-y

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Ishikawa J, Hanamoto A, Shinose M, Kikuchi H, Shiba T, Sakaki Y, Hattori M, Omura S (2003) Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat Biotechnol 21:526–531

    Article  PubMed  Google Scholar 

  • Jaishy BP, Si Kyu L, Ick Dong Y, ** Cheol Y, Jae Kyung S, Doo Hyun N (2006) Cloning and characterization of a gene cluster for the production of polyketide macrolide dihydrochalcomycin in Streptomyces sp. KCTC 0041BP. J Microbiol Biotechnol 16:764–770

    CAS  Google Scholar 

  • Liu W-T, Yang Y-L, Xu Y et al (2010) Imaging mass spectrometry of intraspecies metabolic exchange revealed the cannibalistic factors of Bacillus subtilis. Proc Natl Acad Sci USA 107:16286–16290. doi:10.1073/pnas.1008368107

    Article  PubMed  CAS  Google Scholar 

  • Martin JF, Demain AL (1980) Control of antibiotic biosynthesis. Microbiol Rev 44:230–251

    PubMed  CAS  Google Scholar 

  • Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach M a, Weber T, Takano E, Breitling R (2011) antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res 39:W339–W346. doi:10.1093/nar/gkr466

    Article  PubMed  CAS  Google Scholar 

  • Patel PS, Huang S, Fisher S, Pirnik D, Aklonis C, Dean L, Meyers E, Fernandes P, Mayerl F (1995) Bacillaene, a novel inhibitor of procaryotic protein synthesis produced by Bacillus subtilis: production, taxonomy, isolation, physico-chemical characterization and biological activity. J Antibiot 48:997–1003

    Article  PubMed  CAS  Google Scholar 

  • Pernodet J, Fish S, Blondelet-Rouault M, Cundliffe E (1996) The macrolide–lincosamide–streptogramin B resistance phenotypes characterized by using a specifically deleted, antibiotic-sensitive strain of Streptomyces lividans. Antimicrob Agents Chemother 40:581–585

    PubMed  CAS  Google Scholar 

  • Sharrock RA, Leighton T, Wittmann HG (1981) Macrolide and aminoglycoside antibiotic resistance mutations in the Bacillus subtilis ribosome resulting in temperature-sensitive sporulation. Mol Gen Genet 183:538–543. doi:10.1007/BF00268778

    Article  PubMed  CAS  Google Scholar 

  • Straight PD, Willey JM, Roberto Kolter (2006) Interactions between Streptomyces coelicolor and Bacillus subtilis: role of surfactants in raising aerial structures. J Bacteriol 188:4918–4925. doi:10.1128/JB.00162-06

    Article  PubMed  CAS  Google Scholar 

  • Straight PD, Fischbach MA, Walsh CT, Rudner DZ, Kolter R (2007) A singular enzymatic megacomplex from Bacillus subtilis. Proc Natl Acad Sci USA 104:305–310. doi:10.1073/pnas.0609073103

    Article  PubMed  CAS  Google Scholar 

  • Sudo S, Dworkin M (1972) Bacteriolytic enzymes produced by Myxococcus xanthus. J Bacteriol 110:236–245

    PubMed  CAS  Google Scholar 

  • Ward SL, Hu Z, Schirmer A, Reid R, Revill WP, Reeves CD, Petrakovsky OV, Dong SD, Katz L (2004) Chalcomycin biosynthesis gene cluster from Streptomyces bikiniensis: novel features of an unusual ketolide produced through expression of the chm polyketide synthase in Streptomyces fradiae. Antimicrob Agents Chemother 48:4703–4712

    Article  PubMed  CAS  Google Scholar 

  • Wildermuth H (1970) Development and organization of the aerial mycelium in Streptomyces coelicolor. J Gen Microbiol 60:43–50

    Article  PubMed  CAS  Google Scholar 

  • **ao Y, Wei X, Ebright R, Wall D (2011) Antibiotic production by myxobacteria plays a role in predation. J Bacteriol 193:4626–4633. doi:10.1128/JB.05052-11

    Article  PubMed  CAS  Google Scholar 

  • Yang Y-L, Xu Y, Straight P, Dorrestein PC (2009) Translating metabolic exchange with imaging mass spectrometry. Nat Chem Biol 5:885–887. doi:10.1038/nchembio.252

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank, Hudson Pace for assistance with IMS, Nishant Shetty for facilitating ESI–MS analysis, Lanying Zeng for microscopy, and Karl Gorzelnik for critical reading of the manuscript. SRB was supported by a National Science Foundation NSF-REU fellowship (NSF-DBI-0851611) for 2011. We thank Texas A&M University for financial support of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Straight.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 232 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barger, S.R., Hoefler, B.C., Cubillos-Ruiz, A. et al. Imaging secondary metabolism of Streptomyces sp. Mg1 during cellular lysis and colony degradation of competing Bacillus subtilis . Antonie van Leeuwenhoek 102, 435–445 (2012). https://doi.org/10.1007/s10482-012-9769-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10482-012-9769-0

Keywords

Navigation