Log in

Design and analysis of the dynamic frequency divider using the BiCMOS–NDR chaos-based circuit

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

A dynamic frequency divider using a negative-differential-resistance (NDR) circuit combined with an inductor and a capacitor was demonstrated. This NDR circuit was made of Si-based metal-oxide-semiconductor field-effect transistor (MOS) and SiGe-based heterojunction bipolar transistor devices. The operation of this frequency divider circuit was based on the long-period behavior of the nonlinear NDR circuit generating chaos phenomena. This circuit was analyzed by numerical simulation and the results showed that different dividing ratio could be obtained by modulating the input signal frequency using the MATLAB program and the HSPICE program. Some measured results were shown to verify our analyses. This application was designed based on a standard 0.18 μm BiCMOS technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Lorenz, E. (1963). Deterministic non-periodic flow. Journal of the Atmospheric Sciences, 20, 130–141.

    Article  MATH  Google Scholar 

  2. Ivancevic, V. G., & Ivancevic, T. T. (2008). Complex nonlinearity: Chaos, phase transitions, topology change and path integrals. New York: Springer.

    MATH  Google Scholar 

  3. Hilborn, R. C. (2004). Sea gulls, butterflies, and grasshoppers: A brief history of the butterfly effect in nonlinear dynamics. American Journal of Physics, 72(4), 425–427.

    Article  Google Scholar 

  4. Chua, L. O., Kocarev, L., Eckert, K., & Itoh, M. (1992). Experimental chaos synchronization in Chua’s circuit. International Journal of Bifurcation and Chaos, 2(03), 705–708.

    Article  MATH  Google Scholar 

  5. Chen, L., & Aihara, K. (1995). Chaotic simulated annealing by a neural network model with transient chaos. Neural Networks, 8(6), 915–930.

    Article  Google Scholar 

  6. Kawano, Y., Ohno, Y., Kishimoto, S., Maezawa, K., & Mizutani, T. (2002). High-speed operation of a novel frequency divider using resonant tunneling chaos circuit. Japanese Journal of Applied Physics, 41(2B), 1150–1153.

    Article  Google Scholar 

  7. Quintana, J. M., & Avedillo, M. J. (2005). Analysis of frequency divider RTD circuits. IEEE Transactions on Circuits and Systems I: Regular Papers, 52(10), 2234–2247.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kawano, Y., Ohno, Y., Kishimoto, S., Maezawa, K., & Mizutani, T. (2002). 50 GHz frequency divider using resonant tunnelling chaos circuit. Electronics Letters, 38(7), 305–306.

    Article  Google Scholar 

  9. Romeira, B., Figueiredo, J. M. L., Slight, T. J., Wang, L., Wasige, E., Ironside, C. N., et al. (2008). Synchronization and chaos in a laser diode driven by a resonant tunneling diode. IET Optoelectronics, 2(6), 211–215.

    Article  Google Scholar 

  10. Kaddoum, G., & Shokraneh, F. (2015). Analog network coding for multi-user multi-carrier differential chaos shift keying communication system. IEEE Transactions on Wireless Communications, 14(3), 1492–1505.

    Article  Google Scholar 

  11. Quyen, N. X., Van Yem, V., & Duong, T. Q. (2015). Design and analysis of a spread-spectrum communication system with chaos-based variation of both phase-coded carrier and spreading factor. IET Communications, 9(12), 1466–1473.

    Article  Google Scholar 

  12. Wang, S., Kuang, J., Li, J., Luo, Y., Lu, H., & Hu, G. (2002). Chaos-based secure communications in a large community. Physical Review E, 6(6), 065202(R).

    Article  Google Scholar 

  13. Sudirgo, S., Nandgaonkar, R. P., Curanovic, B., Hebding, J. L., Saxer, R. L., Islam, S. S., et al. (2004). Monolithically integrated Si/SiGe resonant interband tunnel diode/CMOS demonstrating low voltage MOBILE operation. Solid-State Electronics, 48, 1907–1910.

    Article  Google Scholar 

  14. Chung, S. Y., **, N., Berger, P. R., Yu, R., Thompson, P. E., Lake, R., et al. (2004). 3-terminal Si-based negative differential resistance circuit element with adjustable peak-to-valley current ratios using a monolithic vertical integration. Applied Physics Letters, 84(14), 2688–2690.

    Article  Google Scholar 

  15. Balthasar, V. D. P. (1934). Nonlinear theory of electric oscillations. Proceedings of the Institute of Radio Engineers, 22(9), 1051–1086.

    Google Scholar 

  16. Gan, K. J., Tsai, C. S., Hsien, C. W., Li, Y. K., & Yeh, W. K. (2011). Design of monostable-bistable transition logic element using the BiCMOS-based negative differential resistance circuit. Analog Integrated Circuits and Signal Processing, 68(3), 379–385.

    Article  Google Scholar 

  17. Gan, K. J., Tsai, C. S., Chen, Y. W., & Yeh, W. K. (2010). Voltage-controlled multiple-valued logic design using negative differential resistance devices. Solid-State Electronics, 54(12), 1637–1640.

    Article  Google Scholar 

  18. Núñez, J., Avedillo, M. J., & Quintana, J. M. (2011). RTD–CMOS pipelined networks for reduced power consumption. IEEE Transactions on Nanotechnology, 10(6), 1217–1220.

    Article  Google Scholar 

  19. Hanafusa, Hiroaki, Hirose, Nobumitsu, Kasamatsu, Akifumi, Mimura, Takashi, Matsui, Toshiaki, Harold, M. H., et al. (2011). Si/Ge hole-tunneling double-barrier resonant tunneling diodes formed on sputtered flat Ge layers. Applied Physics Express, 4(2), 024102.

    Article  Google Scholar 

  20. Nagase, M., & Tokizaki, T. (2014). Bistability characteristics of GaN/AlN resonant tunneling diodes caused by intersubband transition and electron accumulation in quantum well. IEEE Transactions on Electron Devices, 61(5), 1321–1326.

    Article  Google Scholar 

  21. Chua, L. O., Wu, C. W., Huang, A., & Zhong, G. Q. (1993). A universal circuit for studying and generating chaos. I. Routes to chaos. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 40(10), 732–744.

    Article  MathSciNet  MATH  Google Scholar 

  22. Zou, F., & Nossek, J. A. (1993). Bifurcation and chaos in cellular neural networks. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 40(3), 166–173.

    Article  MathSciNet  MATH  Google Scholar 

  23. Rand, R. H., & Holmes, P. J. (1980). Bifurcation of periodic motions in two weakly coupled van der Pol oscillators. International Journal of Non-Linear Mechanics, 15(4–5), 387–399.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Chip Implementation Center (CIC) of Taiwan for its great effort and assistance in arranging the fabrication of this chip. This work was financially supported by the Ministry of Science and Technology of Taiwan under contract no. NSC101-2221-E-415-026.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Jow Gan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, KJ., Guo, CY., Wu, PF. et al. Design and analysis of the dynamic frequency divider using the BiCMOS–NDR chaos-based circuit. Analog Integr Circ Sig Process 96, 9–19 (2018). https://doi.org/10.1007/s10470-018-1200-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-018-1200-y

Keywords

Navigation