Log in

A 2.4 GHz high-performance CMOS differential quadrature relaxation oscillator

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, the effects that limit the performance of practical implementations of RC relaxation oscillators are investigated. The insights gained are used to suggest a topology for high-frequency quadrature relaxation oscillators with closer-to-optimal performance. The proposed oscillator uses a modified latch to improve the switching speed without increasing the power consumption. Moreover, the new topology avoids static current sources, maximizes the voltage swing and has an active coupling structure without static power consumption that reduces the circuit phase-noise. Experimental results show that the oscillator operates in relaxation mode at 2.4 GHz and achieves a FoM of \(\mathrm {-162\,dBc/Hz}\), which is, as far as the authors know, the best FoM for relaxation oscillators operating in the GHz range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Razavi, B. (1998). RF microelectronics. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  2. Lee, T. H. (2004). The design of CMOS radio frequency integrated circuits (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  3. Crols, J., & Steyaert, M. (1997). CMOS wireless transceiver design. MA: Kluwer Academic Publishers Norwell.

    MATH  Google Scholar 

  4. Iniewski, K. (2008). VLSI circuits for biomedical applications. Norwood: Artech House.

    Google Scholar 

  5. Oliveira, L. B., Fernandes, J. R., Filanovsky, I. M., Verhoeven, C. J. M., & Silva, M. M. (2008). Analysis and design of quadrature oscillators. Dordrecht: Springer.

    Book  Google Scholar 

  6. Navid, R., Lee, T. H., & Dutton, R. W. (2005). Minimum achievable phase noise of RC oscillators. IEEE Journal of Solid-State Circuits, 40(3), 630–637.

    Article  Google Scholar 

  7. Geraedts, P. F. J., van Tuijl, E. A. J. M., Klumperink, E. A. M., Wienk, G. J. M., & Nauta, B. (2014). Towards minimum achievable phase noise of relaxation oscillators. International Journal of Circuit Theory and Applications, 42(3), 238–257.

    Article  Google Scholar 

  8. Geraedts, P. F. J., Van Tuijl, E., Klumperink, E. A. M., Wienk, G. J. M., & Nauta, B. (2008). A90\(\mu\)W 12MHz Relaxation Oscillator with a −162 dB FOM. In International Solid-State Circuits Conference (ISSCC) (pp. 348–618).

  9. Razavi, B. (1996). A study of phase noise in CMOS oscillators. IEEE Journal of Solid-State Circuits, 31(3), 331–343.

    Article  Google Scholar 

  10. Ortigueira, E., Rabuske, T., Bica Oliveira, L., Fernandes, J., & Silva, M. (June 2014). Quadrature relaxation oscillator with fom of −165 dbc/hz. In IEEE International Symposium on Circuits and Systems (ISCAS) 2014 (pp. 1372–1375).

  11. Roberts, M. J. (2003). Signals and systems: Analysis using transform methods and MATLAB. New York City: McGraw-Hill Higher Education.

    Google Scholar 

  12. Hajimiri, A., & Lee, T. H. (1998). A general theory of phase noise in electrical oscillators. IEEE Journal of Solid-State Circuits, 33(2), 179–194.

    Article  Google Scholar 

  13. Leeson, D. B. (1966). A simple model of feedback oscillator noise spectrum. Proceedings of the IEEE, 54(2), 329–330.

    Article  Google Scholar 

  14. Buonomo, A., & Schiavo, A. L. (2006). Analysis of emitter (source)-coupled multivibrators. IEEE Transactions on Circuits and Systems I: Regular Papers, 53(6), 1193–1202.

    Article  Google Scholar 

  15. Casaleiro, J., Lopes, H., Oliveira, L. B., Fernandes, J. R., & Silva, M. M. (2011). A 1 mW low phase-noise relaxation oscillator. In IEEE International Symposium on Circuits and Systems (pp. 1133–1136).

  16. Oliveira, L. B., Fernandes, J. R., Silva, M. M., Filanovsky, I. M., & Verhoeven, C. J. M. (2007). Experimental evaluation of phase-noise and quadrature error in a CMOS 2.4 GHz relaxation oscillator. In IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 1461–1464).

  17. Kim, H., Kim, Y., Kim, T., Park, H., & Cho, S. 2016. 19.3 a 2.4ghz 1.5mw digital mdll using pulse-width comparator and double injection technique in 28nm cmos. In: 2016 IEEE International Solid-State Circuits Conference (ISSCC) (pp. 328–329).

  18. Kim, J., Leibowitz, B. S., Ren, J., & Madden, C. J. (2009). Simulation and analysis of random decision errors in clocked comparators. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(8), 1844–1857.

    Article  MathSciNet  Google Scholar 

  19. Ozalevli, E., & Hasler, P. E. (2008). Tunable highly linear floating-gate CMOS resistor using common-mode linearization technique. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(4), 999–1010.

    Article  MathSciNet  Google Scholar 

  20. Fiorelli, R., Peralias, E. J., & Silveira, F. (2011). Lc-vco design optimization methodology based on the g_m/i_d ratio for nanometer cmos technologies. IEEE Transactions on Microwave Theory and Techniques, 59(7), 1822–1831.

    Article  Google Scholar 

  21. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197.

    Article  Google Scholar 

  22. Rabuske, T., & Fernandes, J. (2014). Noise-aware simulation-based sizing and optimization of clocked comparators. Analog Integrated Circuits and Signal Processing, 81(3), 723–728.

    Article  Google Scholar 

  23. Abdul-Latif, M. M., & Sanchez-Sinencio, E. (2012). Low phase noise wide tuning range n-push cyclic-coupled ring oscillators. IEEE Journal of Solid-State Circuits, 47(6), 1278–1294.

    Article  Google Scholar 

  24. Kim, J.-M., Kim, S., Lee, I.-Y., Han, S.-K., & Lee, S.-G. (2013). A low-noise four-stage voltage-controlled ring oscillator in deep-submicrometer cmos technology. IEEE Transactions on Circuits and Systems II: Express Briefs, 60(2), 71–75.

    Article  Google Scholar 

  25. Badillo, D. A., & Kiaei, S. (2004). A low phase noise 2.0 V 900 MHz CMOS voltage controlled ring oscillator. In Proceedings of the IEEE Symposium on Circuits and Systems (Vol. 4, pp. IV–533).

  26. Chen, Z.-Z., & Lee, T.-C. (2011). The design and analysis of dual-delay-path ring oscillators. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(3), 470–478.

    Article  MathSciNet  Google Scholar 

  27. Park, C.-H., & Kim, B. (1999). A low-noise, 900-mhz vco in 0.6 \(\mu\)m cmos. IEEE Journal of Solid-State Circuits, 34(5), 586–591.

    Article  Google Scholar 

  28. Grozing, M., Phillip, B., & Berroth, M. (2003). CMOS ring oscillator with quadrature outputs and 100 MHz–3.5 GHz tuning range. In Proceedinds of European Solid-State Circuits Conference (pp. 679–682).

  29. Park, S. W., Sanchez-Sinencio, E., & Oscillator, R. F. (2009). Based on a passive RC bandpass filter. IEEE Journal of Solid-State Circuits, 44(11), 3092–3101.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Diogo Brito and Prof. Manuel D. Ortigueira for valuable technical discussions concerning the oscillator theoretical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Ortigueira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortigueira, E., Rabuske, T., Oliveira, L.B. et al. A 2.4 GHz high-performance CMOS differential quadrature relaxation oscillator. Analog Integr Circ Sig Process 90, 101–111 (2017). https://doi.org/10.1007/s10470-016-0866-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-016-0866-2

Keywords

Navigation