Log in

A highly linear CMOS transconductance amplifier in 180 nm process technology

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

The present article describes the design and analysis of an operational transconductance amplifier (voltage to current converter) with wide linear input range. The proposed configuration combines the techniques of signal attenuation and source degeneration in order to reduce the odd order harmonic distortion significantly. The proposed circuit is compared with several circuit topologies based on MOS differential pairs with respect to their achievable linearity, input referred noise and power consumption. The linear transconductor is designed and simulated in 180 nm CMOS process technology with 1.8 V power supply. Simulation results show third order harmonic distortion (HD 3) of −70 dB for 600 mVpp input signal. For 1% transconductance variation the linear range is about 1.2 Vpp. The input referred noise of the transconductor is \(70\,\hbox{nV}/\sqrt{\text {Hz}}\) at 10 MHz. The quiescent power consumption is only 450 μW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tsividis, Y., Czarnul, Z.,& Fang, S. C. (1986). MOS transconductors and integrators with high linearity. Electronic Letters, 22(5).

  2. Nedungadi, A., & Viswanathan, T. R. (1984). Design of linear CMOS transconductance elements. IEEE Transactions on Circuits and Systems, CAS-31(10), 891–894.

    Article  Google Scholar 

  3. Silva-Martinez, J., Stayert, M. S. J., & Sansen, W. M. C. (1991). A large-signal very low-distortion transconductor for high frequency continuous-time filters. IEEE Journal of Solid State Circuits, 26, 946–955.

    Article  Google Scholar 

  4. Lewinsky, A., & Silva-Martinez, J. (2004). OTA linearity enhancement technique for high frequency applications with IM3 below −65 dB. IEEE Transactions on Circuits and Systems-II: Express Briefs, 51(10), 542–548.

    Article  Google Scholar 

  5. Lujan-Martinez, C., Carvajal, R. G., Galan, J., Torralba, A., Ramirez-Angulo, J., & Lopez-Martin, A. (2008). A tunable pseudo-differential OTA with −78 dB THD consuming 1.25 mW. IEEE Transactions on Circuits and Systems-II: Express Briefs, 55(6), 527–531.

    Article  Google Scholar 

  6. Lujan-Martinez, C., Carvajal, R. G., Torralba, A., & Ramirez-Angulo, J. (2008). A −72 dB @ 2 MHz IM3 CMOS tunable pseudo-differential transconductor. IEEE International Symposium on Circuits and Systems,ISCAS’08, pp. 73–76.

  7. Sinencio, E. S. Operational transconductance amplifiers(OTAs): A tutorial. Analog and Mixed Signal Center, TAMU.

  8. Razavi, B. (2005). Design of analog CMOS integrated circuits. New Delhi: Tata McGraw-Hill.

    Google Scholar 

  9. El mourabit, A., Sbaa, M. H., Alaoui-Ismaili, Z., & Lahjomri, F. (2007). A CMOS transconductor with high linear range. IEEE International Conference on Electronics, Circuits and Systems,ICECS’07, pp. 1131–1134.

  10. Ouzounov, S., Roza, E., Hegt, H., v.d. Weide, G., & van Roermund, A. (2007). Design of MOS transconductors with low noise and low harmonic distortion for minimum current consumption. Integration, the VLSI journal, (40), 365–379.

  11. Gray, P. R., & Meyer, R. G. (1982). MOS operational amplifier design: A tutorial overview. IEEE Journal of Solid-State Circuits, SC-17(6), 969–982.

    Article  Google Scholar 

  12. Chen, J., Sanchez-Sinencio, E., & Silva-Martinez, J. (2006). Frequency dependent harmonic-distortion analysis of a linearized cross-coupled CMOS OTA and its application to OTA-C filters. IEEE Transactions on Circuits and Systems-I: Regular Papers, 53(3), 499–510.

    Article  Google Scholar 

  13. Voorman, H., & Veenstra, H. (2000). Tunable high-frequency Gm-C filters. IEEE Journal of Solid-State Circuits, 35(8), 1097–1108.

    Article  Google Scholar 

  14. Mohieldin, A. N., Sanchez-Sinencio, E., & Silva-Martinez, J. (2003). A fully balanced pseudo-differential OTA with common-mode feedforward and inherent common-mode feedback detector. IEEE Journal of Solid-State Circuits, 38(4), 663–668.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Mr. Vivek Goyal for his help in the formulation of the problem in the initial phase of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sougata Kumar Kar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kar, S.K., Sen, S. A highly linear CMOS transconductance amplifier in 180 nm process technology. Analog Integr Circ Sig Process 72, 163–171 (2012). https://doi.org/10.1007/s10470-011-9796-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-011-9796-1

Keywords

Navigation