Log in

Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: a review

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Brain is an amazing organ that controls all activities of a human. Any abnormality in the shape of anatomical regions of the brain needs to be detected as early as possible to reduce the mortality rate. It is also beneficial for treatment planning and therapy. The most crucial task is to isolate abnormal areas from normal tissue regions. To identify abnormalities in the earlier stage, various medical imaging modalities were used by medical practitioners as part of the diagnosis. Magnetic Resonance Imaging (MRI) is a non-invasive diagnostic tool used for analyzing the internal structures owing to its capability to provide images with high resolution and better contrast for soft tissues. This survey focuses on studies done in brain MRI. Manual segmentation of abnormal tissues is a time-consuming task, and the performance depends on the expert’s efficiency. Hence automating tumor segmentation plays a vital role in medical imaging applications. This study aims to provide a comprehensive survey on recent works developed in brain tumor segmentation. In this paper, a systematic literature review is presented to the reader to understand three policies, namely classical scheme, machine learning strategy, and deep learning methodology meant for tumor segmentation. Our primary goal is to include classical methods like atlas-based strategy and statistical-based models employed for segmenting tumors from brain MRI. Few studies that utilized machine learning approaches for the segmentation and classification of brain structures are also discussed. After that, the study provides an overview of deep learning-based segmentation models for quantitative analysis of brain MRI. Deep learning plays a vital role in the automatic segmentation of brain tissues. Presently deep learning technique outshines traditional statistical methods and machine learning approaches. An effort is made to enclose the literature on patch-based and semantic-based tissue segmentation presented by researchers working in the discipline of medical imaging. The manuscript discusses the basic convolutional neural network architecture, Data Sets, and the existing deep learning techniques for tissue segmentation coupled with classification. This paper also attempts to summarize the current works in Convolutional Neural networks and Autoencoders that assist researchers in seeking future directions. Finally, this article is concluded with possible developments and open challenges in brain tumor segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. LBPA40 dataset Available online: https://resource.loni.usc.edu/resources/atlases-downloads/.

  2. IBSR dataset. Available online: https://www.nitrc.org/projects/ibsr.

  3. BrainWeb dataset Available online: https://brainweb.bic.mni.mcgill.ca/.

  4. https://www.med.upenn.edu/cbica/brats2020/data.html

  5. ISLES dataset. Available online: https://www.smir.ch/ISLES/Start2015/

References

  • Ab Aziz MF, Mostafa SA, Foozy CFM, Mohammed MA, Elhoseny M, Abualkishik AZ (2021) Integrating Elman recurrent neural network with particle swarm optimization algorithms for an improved hybrid training of multidisciplinary datasets. Expert Syst Appl 183:115441

    Article  Google Scholar 

  • Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M (2016) Tensorflow large-scale machine learning on heterogeneous distributed systems. ar**v160304467

  • Abiwinanda N, Hanif M, Hesaputra ST, Handayani A, Mengko TR (2018) Braintumor classification using convolutional neural network. World congresson medical physics and biomedical engineering. Springer, Singapore, pp 183–189

    Google Scholar 

  • Ahmadvand A, Daliri MR (2015) Improving the runtime of MRF based method for MRI brain segmentation. Appl Math Comput 256:808–818

    MathSciNet  MATH  Google Scholar 

  • Akkus Z, Galimzianova A, Hoogi A et al (2017) Deep learning for brain MRI segmentation state of the art and future directions. J Digit Imaging 30:449–459

    Article  Google Scholar 

  • Alam M, Rahman MM, Hossain M, Islam M, Ahmed K, Ahmed K, Singh B, Miah MS (2019) Automatic human brain tumor detection in MRI image using template-based K means and improved fuzzy C means clustering algorithm. Big Data Cogn Comput 3:27. https://doi.org/10.3390/bdcc3020027

    Article  Google Scholar 

  • Ali L, He Z, Cao W, Rauf HT, Imrana Y, Heyat MBB (2021) MMDD-ensemble: a multimodal data-driven ensemble approach for Parkinson’s disease detection. Front Neurosci 15:754058

    Article  Google Scholar 

  • Alphonse AS, Shankar K, Jeyasheela Rakkini MJ et al (2021) A multi-scale and rotation-invariant phase pattern (MRIPP) and a stack of restricted Boltzmann machine (RBM) with preprocessing for facial expression classification. J Ambient Intell Human Comput 12:3447–3463. https://doi.org/10.1007/s12652-020-02517-7

    Article  Google Scholar 

  • Team TTD, Al-Rfou R, Alain G, Almahairi A, Angermueller C, Bahdanau D, Bastien F, Bayer J, Belikov A, Belopolsky A et al (2016) Theano: a python framework for fast computation of mathematical expressions. ar**v160502688

  • Amin J, Sharif M, Gul N et al (2020) Brain tumor detection by using stacked autoencoders in deep learning. J Med Syst 44:32. https://doi.org/10.1007/s10916-019-1483-2

    Article  Google Scholar 

  • Ani Brown Mary N, Robert Singh A, Athisayamani S (2020) Banana leaf diseased image classification using novel HEAP auto encoder (HAE) deep learning. Multimed Tools Appl 79:30601–30613. https://doi.org/10.1007/s11042-020-09521-1

    Article  Google Scholar 

  • Arunkumar N, Mohammed MA, Abd Ghani MK et al (2019) K-Means clustering and neural network for object detecting and identifying abnormality of brain tumor. Soft Comput 23:9083–9096

    Article  Google Scholar 

  • Arunkumar N, Mohammed MA, Mostafa SA, Ibrahim DA, Rodrigues JJ, de Albuquerque VHC (2020) Fully automatic model-based segmentation and classification approach for MRI brain tumor using artificial neural networks. Concurr Comput 32(1):e4962

    Article  Google Scholar 

  • Aslam A, Khan E, Sufyan Beg MM (2015) Improved edge detection algorithm for brain tumor segmentation. Procedia Comput Sci 58:430–437. https://doi.org/10.1016/jprocs201508057

    Article  Google Scholar 

  • Athisayamani S, Robert Singh A, Sivanesh Kumar A (2021) Recurrent neural network-based character recognition system for Tamil palm leaf manuscript using stroke zoning. In: Ranganathan G, Chen J, Rocha Á (eds) Inventive communication and computational technologies lecture notes in networks and systems, vol 145. Springer, Singapore. https://doi.org/10.1007/978-981-15-7345-3_14

    Chapter  Google Scholar 

  • Azizi S, Imani F, Ghavidel S, Tahmasebi A, Kwak JT, Xu S, Turkbey B, Choyke P, Pinto P, Wood B, Mousavi P, Abolmaesumi P (2016) Detection of prostate cancer using temporal sequences of ultrasound data a large clinical feasibility study. Int J Comput Assist Radiol Surg 11(6):947–956. https://doi.org/10.1007/s11548-016-1395-2

    Article  Google Scholar 

  • Bakas S, Reyes M, Jakab A, Bauer S, Rempfler M, Crimi A et al (2018) Identifying the best machine learning algorithms for brain tumor segmentation, progression assessment, and overall survival prediction in the BRATS challenge. ar**v preprint ar**v181102629

  • Balafar MA, Ramli AR, Saripan MI et al (2010) Review of brain MRI image segmentation methods. Artif Intell Rev 33:261–274. https://doi.org/10.1007/s10462-010-9155-0

    Article  Google Scholar 

  • Baldi P (2012) Autoencoders, unsupervised learning, and deep architectures. In: JMLR workshop and conference proceedings, pp 2737–2750

  • Barboriak D (2015) Data from RIDER_NEURO_MRI. Cancer Imaging Arch. https://doi.org/10.7937/K9/TCIA2015VOSN3HN1

    Article  Google Scholar 

  • Barzegar Z, Jamzad M (2021) WLFS: Weighted label fusion learning framework for glioma tumor segmentation in brain MRI. Biomed Signal Process Control 68:102617. https://doi.org/10.1016/j.bspc.2021.102617

    Article  Google Scholar 

  • Baur C, Wiestler B, Albarqouni S, Navab N (2018) Deep autoencoding models for unsupervised anomaly segmentation in brain MR images. International MICCAI brainlesion workshop. Springer, Berlin, pp 161–169

    Google Scholar 

  • Benameur N, Mohammed MA, Mahmoudi R, Arous Y, Garcia-Zapirain B, Abdulkareem KH, Bedoui MH (2021) Parametric methods for the regional assessment of cardiac wall motion abnormalities: comparison study. Comput Mater Cotinua 69(1):1233–1252

    Google Scholar 

  • Bernal J, Kushibar K, Asfaw DS, Valverde S, Oliver A, Martí R, Lladó X (2019) Deep convolutional neural networks for brain image analysis on magnetic resonance imaging: a review. Artif Intell Med 95:64–81

    Article  Google Scholar 

  • Brebisson A, Montana G (2015) Deep neural networks for anatomical brain segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, Boston, MA, USA, 7 June

  • Brosch T, Tang LYW, Yoo Y, Li DKB, Traboulsee A, Tam R (2016) Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation. IEEE Trans Med Imaging 35(5):1229–1239. https://doi.org/10.1109/TMI20162528821

    Article  Google Scholar 

  • Canova C, Danieli S, Barbiellini Amidei C, Simonato L, Di Domenicantonio R, Cappai G, Bargagli AM (2019) A systematic review of case-identification algorithms based on Italian healthcare administrative databases for three relevant diseases of the nervous system Parkinson’s disease, multiple sclerosis, and epilepsy. Epidemiol Prev 43(4 Suppl 2):62–74. https://doi.org/10.19191/ep194s2p062093

    Article  Google Scholar 

  • Cha KH, Hadjiiski LM, Samala RK, Chan HP, Cohan RH, Caoili EM, Paramagul C, Alva A, Weizer AZ (2016) Bladder cancer segmentation in CT for treatment response assessment application of deep-learning convolution neural network—a pilot study. Tomography 2:421–429. https://doi.org/10.18383/jtom201600184

    Article  Google Scholar 

  • Chahal PK, Pandey S, Goel S (2020) A survey on brain tumor detection techniques for MR images. Multimed Tools Appl 79(29):21771–21814

    Article  Google Scholar 

  • Chen L, Bentley P, Rueckert D (2017) Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks. Neuroimage Clin 15:633–643

    Article  Google Scholar 

  • Chen Y et al (2020) A robust spatial information-theoretic GMM algorithm for bias field estimation and brain MRI segmentation. IEEE Access 8:89617–89629

    Article  Google Scholar 

  • Chen T, Li M, Li Y, Lin M,Wang N, Wang M, **ao T, Xu B, Zhang C, Zhang Z (2015) Mxnet a flexible and efficient machine learning library for heterogeneous distributed systems ar**v preprint ar**v151201274

  • Cheng J (2017) Brain tumor dataset figshare Dataset

  • Chollet F (2015) Keras the python deep learning API 2020. Available at https//kerasio/

  • Christensen G E, Geng X, Kuhl J G, Bruss J, Grabowski T J, Pirwani I A, Vannier M W, Allen J S, H Damasio, (2006) Introduction to the non-rigid image registration evaluation project (NIREP). In: Proceeding WBIR’06 Proceedings of the Third International Conference on Biomedical Image Registration. Springer, pp 128–135

  • Cinar N, Ozcan A, Kaya M (2022) A hybrid DenseNet121-UNet model for brain tumor segmentation from MR images. Biomed Signal Process Control 76:103647. https://doi.org/10.1016/j.bspc.2022.103647

    Article  Google Scholar 

  • Collobert R, Kavukcuoglu K, Farabet C (2011) Torch7 A matlab-like environment for machine learning. In: BigLearn, NIPS workshop, EPFL-CONF-192376

  • Dai Y, Shi F, Wang L, Wu G, Shen D (2013) ibeat a toolbox for infant brain magnetic resonance image processing. Neuroinformatics 11:211–225

    Article  Google Scholar 

  • Deniz E, Sengur A, Kadiroglu Z et al (2018) Transfer learning based histopathologic image classification for breast cancer detection. Health Inf Sci Syst 6:18

    Article  Google Scholar 

  • Despotovic I, Goossens B, Philips W (2015) MRI segmentation of the human brain challenges, methods, and applications. Comput Math Methods Med. https://doi.org/10.1155/2015/450341

    Article  Google Scholar 

  • Dharshini R and Hemanandhini S (2016) Brain tumor segmentation based on self organising map and discrete wavelet transform. In: 2016 international conference on computer communication and informatics (ICCCI), pp 1–9, https://doi.org/10.1109/ICCCI20167479960

  • Di Martino A, Yan CG et al (2014) The autism brain imaging data exchange towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry 19(6):659–667

    Article  Google Scholar 

  • Dolz J, Desrosiers C, Ayed IB (2018) 3D fully convolutional networks for subcortical segmentation in MRI a large-scale study. Neuroimage 170:456–470

    Article  Google Scholar 

  • Dong N,Wang L, Gao Y, Shen D (2016) Fully convolutional networks for multi-modality isointense infant brain image segmentation. In: Proceedings of the IEEE 13th international symposium on biomedical imaging (ISBI), Prague, Czech Republic, pp 1342–1345

  • Dong H, Yang G, Liu F, Mo Y, Guo Y (2017a) Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Proceedings of the annual conference on medical image understanding and analysis, Edinburgh, UK, pp 506–517

  • Dong Y, Zhang Q, Qiao Z, Yang J (2017b) Classification of cataract fundus image based on deep learning. In: 2017b IEEE international conference on imaging systems and techniques (IST), pp 1–5. https://doi.org/10.1109/IST20178261463

  • Duchi J, Hazan E, Singer Y (2011) Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res 12:2121–2159

    MathSciNet  MATH  Google Scholar 

  • El Maachi I, Bilodeau GA, Bouachir W (2020) Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait. Expert Syst Appl 143:113075. https://doi.org/10.1016/jeswa2019113075

    Article  Google Scholar 

  • Essa E, Aldesouky D, Hussein SE et al (2020) Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation. Med Biol Eng Comput 58:2161–2175

    Article  Google Scholar 

  • Feng C et al (2019) Deep learning framework for Alzheimer’s disease diagnosis via 3D-CNN and FSBi-LSTM. IEEE Access 7:63605–63618. https://doi.org/10.1109/ACCESS20192913847

    Article  Google Scholar 

  • Fiaz M, Junaid M, Ali K, Jung S, Rehman A (2019) Brain MRI Segmentation using rule-based hybrid approach. In: International workshop on frontiers of computer vision (IWFCV), Gangneung, Republic of Korea

  • Fischl B (2012) Freesurfer. Neuroimage 62(2):774–778

    Article  Google Scholar 

  • Fonov VS, Evans AC, McKinstry RC, Almli CR, Collins DL (2009) Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. Neuroimage 47:S102

    Article  Google Scholar 

  • Ghassemi N, Shoeibi A, Rouhani M (2020) Deep neural network with generative adversarial networks pre-training for brain tumor classification based on MR images. Biomed Signal Process Control 57:101678. https://doi.org/10.1016/jbspc2019101678

    Article  Google Scholar 

  • Goodfellow IJ et al (2014) Generative adversarial networks. ar**v14062661

  • Havaei M et al (2016) Brain tumor segmentation with deep neural networks. Med Image Anal 35:18–31

    Article  Google Scholar 

  • K He, X Zhang, S Ren, J Sun (2015) Proceedings of the IEEE international conference on computer vision (ICCV), pp 1026–1034

  • He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, NV, USA, 27–30, pp 770–778

  • He K, Gkioxari G, Dollár P, Girshick R (2017) Mask r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp 2961–2969

  • Huang G, Liu Z, Van der Maaten L, Weinberger K Q (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, Honolulu, HI, USA, 21–26, pp 4700–4708

  • Husham S, Mustapha A, Mostafa SA, Al-Obaidi MK, Mohammed MA, Abdulmaged AI, George ST (2020) Comparative analysis between active contour and otsu thresholding segmentation algorithms in segmenting brain tumor magnetic resonance imaging. J Inf Technol Manag 12:48–61

    Google Scholar 

  • Hussein IJ, Burhanuddin MA, Mohammed MA, Benameur N, Maashi MS (2022) Fully-automatic identification of gynaecological abnormality using a new adaptive frequency filter and histogram of oriented gradients (HOG). Expert Syst 39(3):e12789

    Article  Google Scholar 

  • JE Iglesias, C Liu, P M Thompson, Z Tu (2011) Robust brain extraction across datasets and comparison with publicly available methods. In: IEEE transactions on medical imaging, vol 30, no 9

  • Iglesias JE, Sabuncu MR (2015) Multi-atlas segmentation of biomedical images: a survey. Med Image Anal 24(1):205–219

    Article  Google Scholar 

  • P Isola, J-Y Zhu, T Zhou, A A Efros (2017) Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1125–1134

  • Jack CR, Bernstein MA, Fox NC, Thompson P, Alexander G, Harvey D, Borowski B, Britson PJ, Whitwell JL, Ward C et al (2008) The Alzheimer’s disease neuroimaging initiative (ADNI) MRI methods. J Magn Reson Imaging 27(4):685–691

    Article  Google Scholar 

  • Jemimma TA. and Vetharaj Y J (2018, December. Watershed algorithm based DAPP features for brain tumor segmentation and classification. In: 2018 International conference on smart systems and inventive technology (ICSSIT), IEEE, pp 155–158

  • Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe convolutional architecture for fast feature embedding. ar**v14085093

  • Jiong W, Zhang Y, Wang K, Tang X (2019) Skip connection U-Net for white matter hyperintensities segmentation from MRI. IEEE Access 7:155194–155202

    Article  Google Scholar 

  • Kadry S, Nam Y, Rauf H T, Ra**ikanth V and Lawal I A (2021) March Automated detection of brain abnormality using deep-learning-scheme: a study. In: 2021 Seventh international conference on bio signals, images, and instrumentation (ICBSII), IEEE, pp 1–5

  • Kamnitsas K et al (2016) Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 36:61–78

    Article  Google Scholar 

  • Karthik R, Gupta U, Jha A, Rajalakshmi R, Menaka R (2019) A deep supervised approach for ischemic lesion segmentation from multimodal MRI using Fully Convolutional Network. Appl Soft Comput 84:105685. https://doi.org/10.1016/jasoc2019105685

    Article  Google Scholar 

  • Kennedy J, R C Eberhart (1997) A discrete binary version of the particle swarm algorithm. In: Systems, man, and cybernetics, computational cybernetics and simulation, 1997 IEEE International Conference on Vol 5 IEEE

  • Khan SU, Islam N, Jan Z, Din IU, Rodrigues JJPC (2019) A novel deep learning based framework for the detection and classification of breast cancer using transfer learning. Pattern Recogn Lett 125:1–6. https://doi.org/10.1016/jpatrec201903022

    Article  Google Scholar 

  • Khan MA, Ashraf I, Alhaisoni M, Damaševičius R, Scherer R, Rehman A, Bukhari SAC (2020) Multimodal brain tumor classification using deep learning and robust feature selection: a machine learning application for radiologists. Diagnostics 10(8):565

    Article  Google Scholar 

  • Kingma DP, M Welling (2019) An introduction to variational autoencoders. ar**v preprint ar**v190602691

  • Kolsch A, Afzal M Z, Ebbecke M, Liwicki M, (2017) Real-time document image classification using deep CNN and extreme learning machines. In: 14th IAPR international conference on document analysis and recognition (ICDAR), pp 1318–1323. https://doi.org/10.1109/ICDAR2017217

  • Krishnakumar S, Manivannan K et al (2021) Effective segmentation and classification of brain tumor using Rough K means algorithm and multi Kernel SVM in MR images. J Ambient Intell Human Comput 12:6751–6760

    Article  Google Scholar 

  • Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional neural networks. In: Pereira F, Burges CJC, Bottou L, Weinberger KQ (eds) Advances in neural information processing systems. Curran Associates Inc, Red Hook, pp 1097–1105

    Google Scholar 

  • Kumar A, Upadhyay N, Ghosal P, Chowdhury T, Das D, Mukherjee A, Nandi D (2020) CSNet A new DeepNet framework for ischemic stroke lesion segmentation. Comput Methods Programs Biomed 193:105524

    Article  Google Scholar 

  • Kumar A, Ashok A, Ansari M A, (2018) Brain tumor classification using hybrid model of PSO and SVM classifier. In: International conference on advances in computing, communication control and networking (ICACCCN), pp 1022–1026, https://doi.org/10.1109/ICACCCN20188748787

  • Kumar Mallick P, Ryu SH, Satapathy SK, Mishra S, Nguyen GN, Tiwari P (2019) Brain MRI image classification for cancer detection using deep wavelet autoencoder-based deep neural network. IEEE Access 7:46278–46287. https://doi.org/10.1109/ACCESS20192902252

    Article  Google Scholar 

  • Lahiri A, Jain A K, Nadendla D, P K Biswas, (2019) Faster unsupervised semantic inpainting a GAN based approach. In: IEEE international conference on image processing (ICIP), pp 2706–2710, https://doi.org/10.1109/ICIP20198803356

  • LeCun Y et al (1989) Backpropagation applied to handwritten zip code recognition. Neural Comput 1(4):541–551

    Article  Google Scholar 

  • Li H, Jiang G, Zhang J, Wang R, Wang Z, Zheng WS, Menze B (2018a) Fully convolutional network ensembles for white matter hyperintensities segmentation in MR images. Neuroimage 183:650–665

    Article  Google Scholar 

  • Li Q et al (2018b) Glioma segmentation with a unified algorithm in multimodal MRI images. IEEE Access 6:9543–9553. https://doi.org/10.1109/ACCESS20182807698

    Article  Google Scholar 

  • Li H, Li A, Wang M (2019) A novel end-to-end brain tumor segmentation method using improved fully convolutional networks. Comput Biol Med 108:150–160

    Article  Google Scholar 

  • Liang K, Guan Y, Luo Y (2016) A brain MR image segmentation method based on Gaussian model and Markov random field. In: IEEE advanced information management, communicates, electronic and automation control conference (IMCEC), pp 2042–2048, https://doi.org/10.1109/IMCEC20167867573

  • Likar B, Viergever MA, Pernus F (2001) Retrospective correction of MR intensity inhomogenity by entropy minimization. IEEE Trans Med Imaging 20:1398–1410

    Article  Google Scholar 

  • Liu T, Li H, Wong K, Tarokh A, Guo L, Wong ST (2007) Brain tissue segmentation based on dti data. Neuroimage 38(1):114–123

    Article  Google Scholar 

  • Liu Y, Wei Y, Wang C (2019) Subcortical brain segmentation based on atlas registration and linearized kernel sparse representative classifier. IEEE Access 7:31547–31557. https://doi.org/10.1109/ACCESS20192902463

    Article  Google Scholar 

  • Liu L, Chen S, Zhu X, Zhao X-M, Wu F-X, Wang J (2020) Deep convolutional neural network for accurate segmentation and quantification of white matter hyperintensities. Neurocomputing 384:231–242

    Article  Google Scholar 

  • Long J, Shelhamer E, Darrell T (2014) Fully convolutional networks for semantic segmentation. ar**v preprint ar**v14114038

  • Lotan E, Jain R, Razavian N, Fatterpekar GM, Lui YW (2019) State of the art machine learning applications in glioma imaging. Am J Roentgenol 2121:26–37

    Article  Google Scholar 

  • Magadza T, Viriri S (2021) Deep learning for brain tumor segmentation: a survey of state-of-the-art. J Imaging 7:19. https://doi.org/10.3390/jimaging7020019

    Article  Google Scholar 

  • Maier O, Schroder C, Forkert ND, Martinetz T, Handels H (2016) Classifiers for ischemic stroke lesion segmentation: a comparioson study. PLoS ONE 11(2):e0149828

    Article  Google Scholar 

  • Maier O, Menze BH, von der Gablentz J, Hani L, Heinrich MP, Liebrand M, Winzeck S, Basit A, Bentley P, Chen L et al (2017) Isles 2015—a public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med Image Anal 35:250–269

    Article  Google Scholar 

  • Makropoulos A, Counsell SJ, Rueckert D (2018) A review on automatic fetal and neonatal brain MRI segmentation. Neuroimage 170:231–248. https://doi.org/10.1016/jneuroimage201706074

    Article  Google Scholar 

  • Marcus DS et al (2007) Open access series of imaging studies (oasis) cross-sectional mri data in young, middle aged, nondemented, and demented older adults. J Cogn Neurosci 19(9):1498–1507

    Article  Google Scholar 

  • Mariani G, Bruselli L, Kuwert T et al (2010) A review on the clinical uses of SPECT/CT. Eur J Nucl Med Mol Imaging 37:1959–1985. https://doi.org/10.1007/s00259-010-1390-8

    Article  Google Scholar 

  • Martins SB et al (2019) An adaptive probabilistic atlas for anomalous brain segmentation in MR images. Med Phys 4611:4940–4950

    Article  Google Scholar 

  • Mechrez R, Goldberger J, Greenspan H (2016) Patch-based segmentation with spatial consistency application to MS lesions in brain MRI. Int J Biomed Imaging 2016:13

    Article  Google Scholar 

  • Mehta R, Majumdar A, Sivaswamy J (2017) BrainSegNet: a convolutional neural network architecture for automated segmentation of human brain structures. J Med Imaging 4:024003

    Article  Google Scholar 

  • Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J et al (2015) The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 34(10):1993–2024. https://doi.org/10.1109/TMI20142377694

    Article  Google Scholar 

  • Milletari F, Navab N, Ahmadi S A (2016) V-net Fully convolutional neural networks for volumetric medical image segmentation. In: Fourth international conference on 3D Vision (3DV), IEEE 2016565–71

  • Moeskops P et al (2016) Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans Med Imaging 35(5):1252–1261

    Article  Google Scholar 

  • Morgenstern LB, Frankowski RF et al (1999) Brain tumor masquerading as Stroke. J Neurooncol 44:47–52. https://doi.org/10.1023/A1006237421731

    Article  Google Scholar 

  • Myronenko A (2018) 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi A, Bakas S, Kuijf H, Keyvan F, Reyes M, van Walsum T (eds) Brainlesion glioma, multiple sclerosis, stroke and traumatic brain injuries BrainLes lecture notes in computer science, vol 11384. Springer, Cham

    Google Scholar 

  • Nazir T, Irtaza A, Javed A, Malik H, Hussain D, Naqvi RA (2020) Retinal image analysis for diabetes-based eye disease detection using deep learning. Appl Sci 10:6185. https://doi.org/10.3390/app10186185

    Article  Google Scholar 

  • Nema S, Dudhane A, Murala S, Naidu S (2020) RescueNet: an unpaired GAN for brain tumor segmentation. Biomed Signal Process Control 55:101641

    Article  Google Scholar 

  • H Noh, S Hong, B Han (2015) Learning deconvolution network for semantic segmentation. In: Proceedings of the IEEE international conference on computer vision (ICCV), pp 1520–1528

  • Nyul LG, Udupa JK, Zhang X (2000) New variants of a method of MRI scale standardization. IEEE TransMedImag 19(2):143–150

    Google Scholar 

  • Pantoni L (2010) Cerebral small vessel disease from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 9(7):689–701

    Article  Google Scholar 

  • Park JG, Lee C (2009) Skull strip** based on region growing for magnetic resonance brain images. Neuroimage 47:1394–1407

    Article  Google Scholar 

  • Parvat A, Chavan J, Kadam S, Dev S, Pathak V (2017) A survey of deep-learning frameworks. In: International conference on inventive systems and control (ICISC), pp 1–7, https://doi.org/10.1109/ICISC20178068684

  • Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L (2019) PyTorch: an imperative style, high-performance deep learning library. ar**v191201703

  • Pereira S, Pinto A, Alves V, Silva CA (2016) Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 35:1240–1251

    Article  Google Scholar 

  • Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. ar**v151106434

  • Ra**ikanth V, Raja NSM, Kamalanand K (2017) Firefly algorithm assisted segmentation of tumor from brain MRI using Tsallis function and Markov random field. J Control Eng Appl Inform 193:97–106

    Google Scholar 

  • Razzak MI, Imran M, Xu G (2019) Efficient brain tumor segmentation with multiscale two-pathway-group conventional neural networks. IEEE J Biomed Health Inform 23(5):1911–1919. https://doi.org/10.1109/JBHI20182874033

    Article  Google Scholar 

  • Robert Singh A, Athisayamani S, Sankara Narayanan S, Dhanasekaran S (2021) Fire detection by parallel classification of fire and smoke using convolutional neural network. In: Smys S, Tavares JMRS, Bestak R, Shi F (eds) Computational vision and bio-inspired computing advances in intelligent systems and computing, vol 1318. Springer, Singapore. https://doi.org/10.1007/978-981-33-6862-0_8

    Chapter  Google Scholar 

  • Ronneberger O, Fischer P, Brox T (2015) U-Net convolutional networks for biomedical image segmentation. In: Proceedings of the international conference on medical image computing and computer-assisted intervention, Munich, Germany, pp 234–241

  • Sajid S, Hussain S, Sarwar A (2019) Brain tumor detection and segmentation in MR images using deep learning. Arab J Sci Eng 44:9249–9261

    Article  Google Scholar 

  • Sandhya G, Kande GB, Satya ST (2019) An efficient MRI brain tumor segmentation by the fusion of active contour model and self-organizing-map. J Biomim Biomater Biomed Eng 40:79–91

    Google Scholar 

  • Sanroma G, Benkarim OM, Piella G, Lekadir K, Hahner N, Eixarch E, Ballester MAG (2018) Learning to combine complementary segmentation methods for fetal and 6-month infant brain MRI segmentation. Comput Med Imaging Graph 69:52–59

    Article  Google Scholar 

  • Saritha S, Amutha Prabha N (2018) MRI brain segmentation in combination of clustering methods with Markov random field. Int J Imaging Syst Technol 283:207–216

    Google Scholar 

  • Schaapman JJ, Tushuizen ME, Coenraad MJ, Lamb HJ (2021) Multiparametric MRI in patients with nonalcoholic fatty liver disease. J Magn Reson Imaging 53(6):1623–1631

    Article  Google Scholar 

  • Selvathi D, Aarthy Poornila A (2018) Deep learning techniques for breast cancer detection using medical image analysis. In: Hemanth J, Balas V (eds) Biologically rationalized computing techniques for image processing applications lecture notes in computational vision and biomechanics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-61316-1_8

    Chapter  Google Scholar 

  • Shakeri M, Tsogkas S, Ferrante E, Lippe S, Kadoury S, Paragios N, Kokkinos I (2016) Sub-cortical brain structure segmentation using f-cnn’s. ar**v160202130

  • Sharma M, Purohit GN, Mukherjee S (2018) Information retrieves from brain MRI images for tumor detection using hybrid technique K-means and artificial neural network (KMANN). In: Perez G, Mishra K, Tiwari S, Trivedi M (eds) Networking communication and data knowledge engineering lecture notes on data engineering and communications technologies, vol 4. Springer, Singapore. https://doi.org/10.1007/978-981-10-4600-1_14

    Chapter  Google Scholar 

  • Shi F, Wang L, Dai Y, Gilmore JH, Lin W, Shen D (2012) Label pediatric brain extraction using learning-based meta-algorithm. Neuroimage 62(3):1975–1986

    Article  Google Scholar 

  • Simonyan K, Zisserman A (2014) Deep convolutional networks for large-scale image recognition ar**v 2014. ar**v14091556

  • Siqi L, Liu S, Cai W, Pujol S, Kikinis R, Feng DD (2014) Early diagnosis of Alzheimer’s disease with deep learning. In: Proceedings of the 2014 IEEE 11th international symposium on biomedical imaging (ISBI), Bei**g, China, pp 1015–1018

  • Siva Raja PM, Antony VR (2020) Brain tumor classification using a hybrid deep autoencoder with Bayesian fuzzy clustering-based segmentation approach. Biocybernet Biomed Eng 40(1):440–453

    Article  Google Scholar 

  • Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17(3):143–155

    Article  Google Scholar 

  • Song G et al (2019) A noninvasive system for the automatic detection of gliomas based on hybrid features and PSO-KSVM. IEEE Access 7:13842–13855. https://doi.org/10.1109/ACCESS20192894435

    Article  Google Scholar 

  • Song Y, Z Ji, Q Sun (2014) An extension Gaussian mixture model for brain MRI segmentation. In: 2014 36th Annual international conference of the IEEE engineering in medicine and biology society, IEEE

  • Spasov S, Passamonti L, Duggento A, Liò P, Toschi N (2019) A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease. Neuroimage 189:276–287. https://doi.org/10.1016/jneuroimage201901031

    Article  Google Scholar 

  • Srinivasa Reddy A, Chenna Reddy P (2021) MRI brain tumor segmentation and prediction using modified region growing and adaptive SVM. Soft Comput 25(5):4135–4148

    Article  Google Scholar 

  • Sun S, Cao Z, Zhu H, Zhao J (2019) A survey of optimization methods from a machine learning perspective. IEEE Trans Cybernet 50(8):3668–3681

    Article  Google Scholar 

  • Sun L, Shao W, Wang M, Zhang D, Liu M (2020) High-order feature learning for multi-atlas based label fusion application to brain segmentation with MRI. IEEE Trans Image Process 29:2702–2713. https://doi.org/10.1109/TIP20192952079

    Article  MATH  Google Scholar 

  • Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR), pp 1–9

  • Tang Z, Ahmad S, Yap PT, Shen D (2018) Multi-atlas segmentation of MR tumor brain images using low-rank based image recovery. IEEE Trans Med Imaging 37(10):2224–2235. https://doi.org/10.1109/TMI20182824243

    Article  Google Scholar 

  • Tang Y (2013) Deep learning using support vector machines. CoRR. abs/13060239http//arxivorg/abs/13060239

  • Tarkhaneh O, Shen H et al (2019) An adaptive differential evolution algorithm to optimal multi-level thresholding for MRI brain image segmentation. Expert Syst Appl 138:112820. https://doi.org/10.1016/jeswa201907037

    Article  Google Scholar 

  • Thillaikkarasi R, Saravanan S (2019) An enhancement of deep learning algorithm for brain tumor segmentation using Kernel based CNN with M-SVM. J Med Syst 43:84

    Article  Google Scholar 

  • Vaidhya K, Thirunavukkarasu S, Alex V, Krishnamurthi G (2016) Multi-modal brain tumor segmentation using stacked denoising autoencoders. In: Crimi A, Menze B, Maier O, Reyes M, Handels H (eds) Brainlesion glioma, multiple sclerosis, stroke and traumatic brain injuries lecture notes in computer science, vol 9556. Springer, Cham. https://doi.org/10.1007/978-3-319-30858-6_16

    Chapter  Google Scholar 

  • Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A, Bottou L (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11(12):3371–3408

    MathSciNet  MATH  Google Scholar 

  • Vishnuvarthanan G, Rajasekaran PM, Subbaraj P, Vishnuvarthanan A (2016) An unsupervised learning method with a clustering approach for tumor identification and tissue segmentation in magnetic resonance brain images. Appl Soft Comput 38:190–212

    Article  Google Scholar 

  • Wang Z, Song Q, Soh YC, Sim K (2013) An adaptive spatial information theoretic fuzzy clustering algorithm for image segmentation. Comput vis Image Understand 117(10):1412–1420

    Article  Google Scholar 

  • West J, Blystad I, Engström M, Warntjes JBM, Lundberg P (2013) Application of quantitative MRI for brain tissue segmentation at 15 T and 30 T field strengths. PLoS ONE 8(9):e74795. https://doi.org/10.1371/journalpone0074795

    Article  Google Scholar 

  • Yeh RA, Chen C, Yian Lim T, Schwing AG, Hasegawa-Johnson M, Do MN (2016) Semantic image inpainting with deep generative models. ar**v160707539

  • Yousef R, Gupta G, Vanipriya CH, Yousef N (2021) A comparative study of different machine learning techniques for brain tumor analysis. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.03.303

    Article  Google Scholar 

  • Zago GT, Andreão RV, Dorizzi B, Salles EOT (2018) Retinal image quality assessment using deep learning. Comput Biol Med 103:64–70

    Article  Google Scholar 

  • Zeiler MD (2012) ADADELTA: an adaptive learning rate method. ar**v12125701

  • Zhang W et al (2015) Deep convolutional neural networks for multimodality isointense infant brain image segmentation. Neuroimage 108:214–224

    Article  Google Scholar 

  • Zhang L et al (2020) Ischemic stroke lesion segmentation using multi-plane information fusion. IEEE Access 8:45715–45725. https://doi.org/10.1109/ACCESS20202977415

    Article  Google Scholar 

  • Zhang C et al (2018) MS-GAN GAN-based semantic segmentation of multiple sclerosis lesions in brain magnetic resonance imaging. In: Digital image computing techniques and applications (DICTA), pp 1–8, https://doi.org/10.1109/DICTA20188615771

  • Zhang Y et al (2017) A modified MRF segmentation of brain MR images. In: 2017 10th International congress on image and signal processing, BioMedical engineering and informatics (CISP-BMEI), IEEE

  • Zhao A et al (2019) Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

  • Zhou T, Ruan S, Canu S (2019) A review: deep learning for medical image segmentation using multi-modality fusion. Array 3–4:100004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parvathy Jyothi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jyothi, P., Singh, A.R. Deep learning models and traditional automated techniques for brain tumor segmentation in MRI: a review. Artif Intell Rev 56, 2923–2969 (2023). https://doi.org/10.1007/s10462-022-10245-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-022-10245-x

Keywords

Navigation