Log in

Conversion of open pasture to hardwood silvopasture enhanced soil health of an ultisol

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Black walnut (Juglans nigra) and honeylocust (Gleditsia triacanthos) have gained particular interest for use in silvopastures and other temperate agroforestry systems. However, measures of soil health indicators in these deciduous hardwood silvopastures over time have received limited attention. This study assessed soil health indicators in 25-year-old black walnut- (BSP) and honeylocust-based silvopastures (HSP) and compared with those from adjacent open pasture (OP) systems. Soil samples collected from 0 to 10 cm depth were analyzed for soil organic matter (OM), carbon and nitrogen fractions, glomalin-related soil protein, soil enzymatic activities, and microbial community structure. The soil OM content in HSP (64 g kg−1) was greater (p < 0.05) than BSP and OP (55 g kg−1). The BSP soils had about 45% and 52% more (p < 0.05) microbial biomass carbon and nitrogen than OP soils. The HSP soils had 60% greater (p < 0.05) microbial biomass nitrogen than OP soils. The BSP supported greater (p < 0.05) β-glucosidase and urease activities than the HSP and OP treatments, while greater (p < 0.05) β-glucosidase activity was measured in HSP than OP. Total phospholipid-derived fatty acid and actinomycetes abundance were greater (p < 0.001) in OP compared to BSP and HSP while the arbuscular mycorrhiza fungi abundance was greater (p < 0.05) in OP than in HSP. These findings indicate that black walnut and honeylocust trees in the silvopastures with proper management can improve certain soil health parameters over time depending on tree characteristics and the age of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Download references

Acknowledgements

The authors would like to acknowledge Virginia Tech Soil Testing Lab, Virginia Tech Environmental Quality Lab, and Soil Physics Lab at South Dakota State University for help with all the lab analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjok Poudel.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poudel, S., Bansal, S., Podder, S. et al. Conversion of open pasture to hardwood silvopasture enhanced soil health of an ultisol. Agroforest Syst 96, 1237–1247 (2022). https://doi.org/10.1007/s10457-022-00783-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-022-00783-2

Keywords

Navigation