Log in

Natural abundance of 15N in two cacao plantations with legume and non-legume shade trees

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Natural abundance of 15N was sampled in young and mature leaves, branches, stem, and coarse roots of trees in a cacao (Theobroma cacao) plantation shaded by legume tree Inga edulis and scattered non-legumes, in a cacao plantation with mixed-species shade (legume Gliricidia sepium and several non-legumes), and in a tree hedgerow bordering the plantations in Guácimo, in the humid Caribbean lowlands of Costa Rica. The deviation of the sample 15N proportion from that of atmosphere (δ15N) was similar in non-legumes Cordia alliodora, Posoqueria latifolia, Rollinia pittieri, and T. cacao. Deep-rooted Hieronyma alchorneoides had lower δ15N than other non-N2-fixers, which probably reflected uptake from a partially different soil N pool. Gliricidia sepium had low δ15N. Inga edulis had high δ15N in leaves and branches but low in stem and coarse roots. The percentage of N fixed from atmosphere out of total tree N (%Nf) in G. sepium varied 56–74%; N2 fixation was more active in July (the rainiest season) than in March (the relatively dry season). The variation of δ15N between organs in I. edulis was probably associated to 15N fractionation in leaves. Stem and coarse root δ15N was assumed to reflect the actual ratio of N2 fixation to soil N uptake; stem-based estimates of %Nf in I. edulis were 48–63%. Theobroma cacao below I. edulis had lower δ15N than T. cacao below mixed-species shade, which may indicate direct N transfer from I. edulis to T. cacao but results so far were inconclusive. Further research should address the 15N fractionation in the studied species for improving the accuracy of the N transfer estimates. The δ15N appeared to vary according to ecophysiological characteristics of the trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arnáez E, Moreira I (2006) Estudio de raíces en Hieronyma alchorneoides Allemão (pilón) en Sarapiquí, Heredia, Costa Rica. Kurú: Revista Forestal 3(9). http://www.itcr.ac.cr/revistaKuru. Cited September 2007

  • Babbar LI, Zak DR (1994) Nitrogen cycling in coffee agroecosystems: net nitrogen mineralization and nitrification in the presence and absence of shade trees. Agric Ecosyst Environ 48:107–113. doi:10.1016/0167-8809(94)90081-7

    Article  CAS  Google Scholar 

  • Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials. Nutr Cycl Agroecosyst 57:235–270. doi:10.1023/A:1009890514844

    Article  Google Scholar 

  • Bolaños RA, Watson VC (1993) Mapa ecológico de Costa Rica, según el sistema de clasificación de zonas de vida del mundo de L.R Holdrige. Centro Científico Tropical, San José, Costa Rica

  • Chalk PM, Ladha JK (1999) Estimation of legume symbiotic dependence: an evaluation of techniques based on 15N dilution. Soil Biol Biochem 31:1901–1917. doi:10.1016/S0038-0717(99)00095-4

    Article  CAS  Google Scholar 

  • Domenach AM (1995) Approche de l’estimation de la fixation symbiotique des arbres par l’utilisation des abondances isotopiques naturelles de l’azote. In: Maillard P, Bonhomme R (eds) Utilisation des isotopes stables pour l’etude du fonctionnement des plantes, Paris 16–17 Décembre 1993. Les Colloques 70, INRA Editions, Versailles, France, pp 159–172

  • Dulormne M, Sierra J, Nygren P, Cruz P (2003) Nitrogen-fixation dynamics in a cut-and-carry silvopastoral system in the subhumid conditions of Guadeloupe, French Antilles. Agrofor Syst 59:121–129. doi:10.1023/A:1026387711571

    Article  Google Scholar 

  • Haggar JP, Ewel JJ (1997) Primary productivity and resource sharing in model tropical ecosystems. Ecology 78:1211–1221

    Article  Google Scholar 

  • Haggar JP, Tanner EJV, Beer JW, Kass DCL (1993) Nitrogen dynamics of tropical agroforestry and annual crop** systems. Soil Biol Biochem 25:1363–1378. doi:10.1016/0038-0717(93)90051-C

    Article  CAS  Google Scholar 

  • Handley LL, Raven JA (1992) The use of natural abundance of nitrogen isotopes in plant physiology and ecology. Plant Cell Environ 15:965–985. doi:10.1111/j.1365-3040.1992.tb01650.x

    Article  CAS  Google Scholar 

  • Handley LL, Azcón R, Ruíz Lozano JM, Scrimgeour CM (1999) Plant δ15N associated with arbuscular mycorrhization, drought and nitrogen deficiency. Rapid Commun Mass Spectrom 13:1320–1324. doi:10.1002/(SICI)1097-0231(19990715)13:13<1320::AID-RCM607>3.0.CO;2-M

    Article  PubMed  CAS  Google Scholar 

  • He X-H, Critchley C, Bledsoe C (2003) Nitrogen transfer within and between plants via common mycorrhizal networks (CMNs). Crit Rev Plant Sci 22:531–567. doi:10.1080/713608315

    Article  Google Scholar 

  • Hunt SH, Layzell DB (1993) Gas exchange of legume nodules and regulation of nitrogenase activity. Annu Rev Plant Physiol Plant Mol Biol 44:483–511. doi:10.1146/annurev.pp. 44.060193.002411

    Article  CAS  Google Scholar 

  • Högberg P (1997) 15N natural abunce in soil-plant systems. New Phytol 137:179–203. doi:10.1046/j.1469-8137.1997.00808.x

    Article  Google Scholar 

  • Iglesias L, Salas E, Leblanc HA, Nygren P (2007) Characterization and host preference of arbuscular mycorrhizae associated to a Theobroma cacaoInga edulis agroforestry system in the humid tropics of Costa Rica. In: 2nd International symposium on multi-strata agroforestry systems with perennial crops, CATIE, Turrialba, Costa Rica, 17–21 September 2007, Posters Session 1

  • Kass DCL, Sylvester-Bradley R, Nygren P (1997) The role of nitrogen fixation and nutrient supply in some agroforestry systems of the Americas. Soil Biol Biochem 29:775–785. doi:10.1016/S0038-0717(96)00269-6

    Article  CAS  Google Scholar 

  • Koponen P, Nygren P, Domenach AM, Le Roux C, Saur E, Roggy JC (2003) Nodulation and dinitrogen fixation of legume trees in a tropical freshwater swamp forest in French Guiana. J Trop Ecol 19:655–666. doi:10.1017/S0266467403006059

    Article  Google Scholar 

  • Leblanc HA, McGraw RL, Nygren P, Le Roux C (2005) Neotropical legume tree Inga edulis forms N2-fixing symbiosis with fast-growing Bradyrhizobium strains. Plant Soil 275:123–133. doi:10.1007/s11104-005-0808-8

    Article  CAS  Google Scholar 

  • Leblanc HA, McGraw RL, Nygren P (2007) Dinitrogen-fixation by three Neotropical agroforestry tree species under semi-controlled field conditions. Plant Soil 291:199–209. doi:10.1007/s11104-006-9186-0

    Article  CAS  Google Scholar 

  • Lovelock CE, Ewel JJ (2005) Links between tree species, symbiotical fungal diversity and ecosystem functioning in simplified tropical ecosystems. New Phytol 167:219–228. doi:10.1111/j.1469-8137.2005.01402.x

    Article  PubMed  Google Scholar 

  • Mafongoya PL, Giller KE, Odee D, Gathumbi S, Ndufa SK, Sitompul SM (2004) Benefiting from N2-fixation and managing rhizobia. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems. CABI Publishing, Wallingford, UK, pp 227–242

    Google Scholar 

  • Martinelli LA, Piccolo MC, Townsend AR, Vitousek PM, Cuevas E, McDowell W et al (1999) Nitrogen stable isotope composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46:45–65

    CAS  Google Scholar 

  • Mazzarino MJ, Szott L, Jiménez M (1993) Dynamics of soil total C and N, microbial biomass, and water-soluble C in tropical agroecosystems. Soil Biol Biochem 25:205–214. doi:10.1016/0038-0717(93)90028-A

    Article  CAS  Google Scholar 

  • Nair PKR (1993) An introduction to agroforestry. Kluwer Academic Publishers, Dordrecht, The Netherlands, p 499

  • Nygren P, Ramírez C (1995) Production and turnover of N2 fixing nodules in relation to foliage development in periodically pruned Erythrina poeppigiana (Leguminosae) trees. For Ecol Manage 73:59–73

    Article  Google Scholar 

  • Nygren P, Cruz P, Domenach AM, Vaillant V, Sierra J (2000) Influence of forage harvesting regimes on dynamics of biological dinitrogen fixation of a tropical woody legume. Tree Physiol 20:41–48

    PubMed  Google Scholar 

  • Nygren P, Leblanc HA, Lu M (2007) Root architecture of Inga edulis and Theobroma cacao as an indicator of soil resource sharing in a shaded cacao plantation. In: 2nd International symposium on multi-strata agroforestry systems with perennial crops, CATIE, Turrialba, Costa Rica, 17–21 September 2007, Oral presentations, Session 1

  • Okon IE, Osonubi O, Sanginga N (1996) Vesicular-arbsucular mycorrhiza effects on Gliricidia sepium and Senna siamea in a fallowed alley crop** system. Agrofor Syst 33:165–175. doi:10.1007/BF00213648

    Article  Google Scholar 

  • Peoples MB, Palmer B, Lilley DM, Duc LM, Herridge DF (1996) Application of 15N and xylem ureide methods for assessing N2 fixation of three shrub legumes periodically pruned for forage. Plant Soil 182:125–137. doi:10.1007/BF00011001

    Article  CAS  Google Scholar 

  • Roggy JC, Prévost MF, Gourbière F, Casabianca H, Garbaye J, Domenach AM (1999) Leaf natural 15N abundance and N concentration as potential indicators of plant N nutrition in legumes and pioneer species in a rain forest of French Guiana. Oecologia 120:171–182. doi:10.1007/s004420050846

    Article  Google Scholar 

  • Rowe EC, van Noordwijk M, Suprayogo D, Hairiah K, Giller KE, Cadisch G (2001) Root distribution partially explain 15N uptake patterns in Gliricidia and Peltophorum hedgerow intercrop** systems. Plant Soil 235:167–179. doi:10.1023/A:1011961409353

    Article  CAS  Google Scholar 

  • Salas E, Nygren P, Domenach AM, Berninger F, Ramírez C (2001) Estimating biological N2 fixation by a tropical legume tree using the non-nodulating phenophase as the reference in the 15N natural abundance method. Soil Biol Biochem 33:1859–1868. doi:10.1016/S0038-0717(01)00114-6

    Article  CAS  Google Scholar 

  • Salas E, Ozier-Lafontaine H, Nygren P (2004) A fractal root model applied for estimating the root biomass and architecture in two tropical legume tree species. Ann Sci 61:337–345. doi:10.1051/forest:2004027

    Article  Google Scholar 

  • Sancho F, Mata R, Molina E, Salas R (1989) Estudio de suelos, finca de la Escuela de Agricultura de la Región Tropical Húmeda, Guácimo, Provincia de Limón. Universidad EARTH, Guácimo, Costa Rica, p 151

  • Shearer G, Kohl DH (1986) N2 fixation in field settings: estimations based on natural 15N abundance. Aust J Plant Physiol 13:699–756

    CAS  Google Scholar 

  • Sierra J, Nygren P (2005) Role of root inputs from a dinitrogen-fixing tree in soil carbon and nitrogen sequestration in a tropical silvopastoral system. Aust J Soil Res 43:667–675. doi:10.1071/SR04167

    Article  CAS  Google Scholar 

  • Sierra J, Nygren P (2006) Transfer of N fixed by a legume tree to the associated grass in a tropical silvopastoral system. Soil Biol Biochem 38:1893–1903. doi:10.1016/j.soilbio.2005.12.012

    Article  CAS  Google Scholar 

  • Sierra J, Dulormne M, Desfontaines L (2002) Soil nitrogen as affected by Gliricidia sepium in a silvopastoral system in Guadeloupe, French Antilles. Agrofor Syst 54:87–97. doi:10.1023/A:1015025401946

    Article  Google Scholar 

  • Snoeck D, Zapata F, Domenach AM (2000) Isotopic evidence of the transfer of nitrogen fixed by legumes to coffee trees. Biotechnol Agron Soc Environ 4:95–100

    CAS  Google Scholar 

  • Ståhl L, Nyberg G, Högberg P, Buresh RL (2002) Effects of planted tree fallows on soil nitrogen dynamics above-ground and root biomass, N2-fixation and subsequent maize crop productivity in Kenya. Plant Soil 243:103–117. doi:10.1023/A:1019937408919

    Article  Google Scholar 

  • Wheeler CT, Tilak M, Scrimgeour CM, Hooker JE, Handley LL (2000) Effects of symbiosis with Frankia and arbuscular mycorrhizal fungus on the natural abundance of 15N in four species of Casuarina. J Exp Bot 51:287–297. doi:10.1093/jexbot/51.343.287

    Article  PubMed  CAS  Google Scholar 

  • Yoneyama T, Muraoka T, Murakami T, Boonkerd N (1993) Natural abundance of 15N in tropical plants with emphasis on tree legumes. Plant Soil 153:295–304. doi:10.1007/BF00013003

    Article  Google Scholar 

Download references

Acknowledgements

We want to express our special thanks to Ms. Eloni Sonninen of the Dating Laboratory at the University of Helsinki for performing the IRMS analyses, technical advice, and help in interpretation of the results, and Mr. Ricardo Palacios for plantation management. Mr. Minor Cubillo collected all samples that required climbing to trees, Ms. Anu Nygren and Ms. Jenni Luolaja assisted in other samplings, and Ms. Marjut Wallner performed the total N analyses. The study was financed by the grant # 111769 from the Academy of Finland and by the EARTH University research committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pekka Nygren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nygren, P., Leblanc, H.A. Natural abundance of 15N in two cacao plantations with legume and non-legume shade trees. Agroforest Syst 76, 303–315 (2009). https://doi.org/10.1007/s10457-008-9160-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-008-9160-3

Keywords

Navigation