Log in

TMEM100 is a key factor for specification of lymphatic endothelial progenitors

  • Original Paper
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Background

TMEM100 is identified as a downstream gene of bone morphogenetic protein 9 (BMP9) signaling via activin receptor-like kinase 1 (ALK1), which is known to participate in lymphangiogenesis as well as angiogenesis. TMEM100 has been shown to be important for blood vessel formation and maintenance, but its role in the development of lymphatic vasculature remains unknown. The objective is to investigate the role of TMEM100 in development of the lymphatic system.

Methods and results

Global Tmem100 gene deletion was induced by tamoxifen on 10.5 days post-coitus. Tmem100-inducible knockout (iKO) embryos in embryonic days (E)14.5–16.5 exhibited edema and blood-filled enlarged lymphatics with misconnections between veins and lymphatic vessels. For a reciprocal approach, we have generated a novel mouse line in which TMEM100 overexpression (OE) can be induced in endothelial cells by intercrossing with Tie2-Cre driver. TMEM100-OE embryos at E12.5–14.5 exhibited edema with small size and number of lymphatic vessels, the exact opposite phenotypes of Tmem100-iKOs. In Tmem100-iKO embryos, the number of progenitors of lymphatic endothelial cells (LECs) in the cardinal vein was increased, while it was decreased in TMEM100-OE embryos. The activity of NOTCH signaling, which limits the number of progenitors of LECs in the cardinal vein, was decreased in Tmem100-iKO embryos, whereas it was increased in TMEM100-OE embryos.

Conclusion

TMEM100 plays an important role in the specification of LECs in the cardinal veins, at least in part, by regulating the NOTCH signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jha SK, Rauniyar K, Jeltsch M (2018) Key molecules in lymphatic development, function, and identification. Ann Anat 219:25–34. https://doi.org/10.1016/j.aanat.2018.05.003

    Article  PubMed  Google Scholar 

  2. François M, Caprini A, Hosking B, Orsenigo F, Wilhelm D, Browne C, Paavonen K, Karnezis T, Shayan R, Downes M, Davidson T, Tutt D, Cheah KSE, Stacker SA, Muscat GEO, Achen MG, Dejana E, Koopman P (2008) Sox18 induces development of the lymphatic vasculature in mice. Nature 456(7222):643–647. https://doi.org/10.1038/nature07391

    Article  CAS  PubMed  Google Scholar 

  3. Wigle JT, Oliver G (1999) Prox1 function is required for the development of the murine lymphatic system. Cell 98(6):769–778. https://doi.org/10.1016/s0092-8674(00)81511-1

    Article  CAS  PubMed  Google Scholar 

  4. Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, Jeltsch M, Jackson DG, Talikka M, Rauvala H, Betsholtz C, Alitalo K (2004) Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 5(1):74–80. https://doi.org/10.1038/ni1013

    Article  CAS  PubMed  Google Scholar 

  5. Bos FL, Caunt M, Peterson-Maduro J, Planas-Paz L, Kowalski J, Karpanen T, van Impel A, Tong R, Ernst JA, Korving J, van Es JH, Lammert E, Duckers HJ, Schulte-Merker S (2011) CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ Res 109(5):486–491. https://doi.org/10.1161/CIRCRESAHA.111.250738

    Article  CAS  PubMed  Google Scholar 

  6. Jeltsch M, Jha SK, Tvorogov D, Anisimov A, Leppänen V-M, Holopainen T, Kivelä R, Ortega S, Kärpanen T, Alitalo K (2014) CCBE1 enhances lymphangiogenesis via A disintegrin and metalloprotease with thrombospondin motifs-3-mediated vascular endothelial growth factor-C activation. Circulation 129(19):1962–1971. https://doi.org/10.1161/CIRCULATIONAHA.113.002779

    Article  CAS  PubMed  Google Scholar 

  7. Le Guen L, Karpanen T, Schulte D, Harris NC, Koltowska K, Roukens G, Bower NI, van Impel A, Stacker SA, Achen MG, Schulte-Merker S, Hogan BM (2014) Ccbe1 regulates Vegfc-mediated induction of Vegfr3 signaling during embryonic lymphangiogenesis. Development 141(6):1239–1249. https://doi.org/10.1242/dev.100495

    Article  CAS  PubMed  Google Scholar 

  8. Uhrin P, Zaujec J, Breuss JM, Olcaydu D, Chrenek P, Stockinger H, Fuertbauer E, Moser M, Haiko P, Fässler R, Alitalo K, Binder BR, Kerjaschki D (2010) Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation. Blood 115(19):3997–4005. https://doi.org/10.1182/blood-2009-04-216069

    Article  CAS  PubMed  Google Scholar 

  9. Johnson NC, Dillard ME, Baluk P, McDonald DM, Harvey NL, Frase SL, Oliver G (2008) Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev 22(23):3282–3291. https://doi.org/10.1101/gad.1727208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Murtomaki A, Uh MK, Choi YK, Kitajewski C, Borisenko V, Kitajewski J, Shawber CJ (2013) Notch1 functions as a negative regulator of lymphatic endothelial cell differentiation in the venous endothelium. Development 140(11):2365–2376. https://doi.org/10.1242/dev.083865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fatima A, Culver A, Culver F, Liu T, Dietz WH, Thomson BR, Hadjantonakis A-K, Quaggin SE, Kume T (2014) Murine Notch1 is required for lymphatic vascular morphogenesis during development. Dev Dyn 243(7):957–964. https://doi.org/10.1002/dvdy.24129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi D, Park E, Jung E, Seong YJ, Yoo J, Lee E, Hong M, Lee S, Ishida H, Burford J, Peti-Peterdi J, Adams RH, Srikanth S, Gwack Y, Chen CS, Vogel HJ, Koh CJ, Wong AK, Hong Y-K (2017) Laminar flow downregulates Notch activity to promote lymphatic sprouting. J Clin Invest 127(4):1225–1240. https://doi.org/10.1172/JCI87442

    Article  PubMed  PubMed Central  Google Scholar 

  13. Böhmer R, Neuhaus B, Bühren S, Zhang D, Stehling M, Böck B, Kiefer F (2010) Regulation of developmental lymphangiogenesis by Syk(+) leukocytes. Dev Cell 18(3):437–449. https://doi.org/10.1016/j.devcel.2010.01.009

    Article  CAS  PubMed  Google Scholar 

  14. Weng H-J, Patel KN, Jeske NA, Bierbower SM, Zou W, Tiwari V, Zheng Q, Tang Z, Mo GCH, Wang Y, Geng Y, Zhang J, Guan Y, Akopian AN, Dong X (2015) Tmem100 is a regulator of TRPA1-TRPV1 complex and contributes to persistent pain. Neuron 85(4):833–846. https://doi.org/10.1016/j.neuron.2014.12.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Moon E-H, Kim M-J, Ko KS, Kim YS, Seo J, Oh SP, Lee YJ (2010) Generation of mice with a conditional and reporter allele for Tmem100. Genesis 48(11):673–678. https://doi.org/10.1002/dvg.20674

    Article  CAS  PubMed  Google Scholar 

  16. Somekawa S, Imagawa K, Hayashi H, Sakabe M, Ioka T, Sato GE, Inada K, Iwamoto T, Mori T, Uemura S, Nakagawa O, Saito Y (2012) Tmem100, an ALK1 receptor signaling-dependent gene essential for arterial endothelium differentiation and vascular morphogenesis. PNAS 109(30):12064–12069. https://doi.org/10.1073/pnas.1207210109

    Article  PubMed  Google Scholar 

  17. Mizuta K, Sakabe M, Hashimoto A, Ioka T, Sakai C, Okumura K, Hattammaru M, Fujita M, Araki M, Somekawa S, Saito Y, Nakagawa O (2014) Impairment of endothelial–mesenchymal transformation during atrioventricular cushion formation in Tmem100 null embryos. Dev Dyn. https://doi.org/10.1002/dvdy.24216

    Article  PubMed  Google Scholar 

  18. Moon E-H, Kim YS, Seo J, Lee S, Lee YJ, Oh SP (2015) Essential role for TMEM100 in vascular integrity but limited contributions to the pathogenesis of hereditary haemorrhagic telangiectasia. Cardiovasc Res 105(3):353–360. https://doi.org/10.1093/cvr/cvu260

    Article  CAS  PubMed  Google Scholar 

  19. Tachida Y, Izumi N, Sakurai T, Kobayashi H (2017) Mutual interaction between endothelial cells and mural cells enhances BMP9 signaling in endothelial cells. Biol Open 6(3):370–380. https://doi.org/10.1242/bio.020503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Niessen K, Zhang G, Ridgway JB, Chen H, Yan M (2010) ALK1 signaling regulates early postnatal lymphatic vessel development. Blood 115(8):1654–1661. https://doi.org/10.1182/blood-2009-07-235655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Levet S, Ciais D, Merdzhanova G, Mallet C, Zimmers TA, Lee S-J, Navarro FP, Texier I, Feige J-J, Bailly S, Vittet D (2013) Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. Blood 122(4):598–607. https://doi.org/10.1182/blood-2012-12-472142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshimatsu Y, Lee YG, Akatsu Y, Taguchi L, Suzuki HI, Cunha SI, Maruyama K, Suzuki Y, Yamazaki T, Katsura A, Oh SP, Zimmers TA, Lee S-J, Pietras K, Koh GY, Miyazono K, Watabe T (2013) Bone morphogenetic protein-9 inhibits lymphatic vessel formation via activin receptor-like kinase 1 during development and cancer progression. Proc Natl Acad Sci USA 110(47):18940–18945. https://doi.org/10.1073/pnas.1310479110

    Article  CAS  PubMed  Google Scholar 

  23. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 97(6):2626–2631. https://doi.org/10.1073/pnas.97.6.2626

    Article  CAS  PubMed  Google Scholar 

  24. Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1. Nat Genet 26(3):328–331. https://doi.org/10.1038/81634

    Article  CAS  PubMed  Google Scholar 

  25. Park SO, Lee YJ, Seki T, Hong K-H, Fliess N, Jiang Z, Park A, Wu X, Kaartinen V, Roman BL, Oh SP (2008) ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Blood 111(2):633–642. https://doi.org/10.1182/blood-2007-08-107359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Park SO, Wankhede M, Lee YJ, Choi E-J, Fliess N, Choe S-W, Oh S-H, Walter G, Raizada MK, Sorg BS, Oh SP (2009) Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Investig 119(11):3487–3496. https://doi.org/10.1172/JCI39482

    Article  CAS  PubMed  Google Scholar 

  27. Stenman JM, Rajagopal J, Carroll TJ, Ishibashi M, McMahon J, McMahon AP (2008) Canonical Wnt signaling regulates organ-specific assembly and differentiation of CNS vasculature. Science 322(5905):1247–1250. https://doi.org/10.1126/science.1164594

    Article  CAS  PubMed  Google Scholar 

  28. Mao J, Barrow J, McMahon J, Vaughan J, McMahon AP (2005) An ES cell system for rapid, spatial and temporal analysis of gene function in vitro and in vivo. Nucl Acids Res 33(18):e155. https://doi.org/10.1093/nar/gni146

    Article  CAS  PubMed  Google Scholar 

  29. Bazigou E, Lyons OTA, Smith A, Venn GE, Cope C, Brown NA, Makinen T (2011) Genes regulating lymphangiogenesis control venous valve formation and maintenance in mice. J Clin Invest 121(8):2984–2992. https://doi.org/10.1172/JCI58050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang X, Seed B (2003) A PCR primer bank for quantitative gene expression analysis. Nucl Acids Res 31(24):e154

    Article  Google Scholar 

  31. Kim S, Park HK, Jung HY, Lee SY, Min KW, Kim WY, Han HS, Kim WS, Hwang TS, Lim SD (2013) ERG Immunohistochemistry as an endothelial marker for assessing lymphovascular invasion. Korean J Pathol 47(4):355–364. https://doi.org/10.4132/KoreanJPathol.2013.47.4.355

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Dev Biol 230(2):230–242. https://doi.org/10.1006/dbio.2000.0106

    Article  CAS  PubMed  Google Scholar 

  33. Janardhan HP, Milstone ZJ, Shin M, Lawson ND, Keaney JF, Trivedi CM (2017) Hdac3 regulates lymphovenous and lymphatic valve formation. J Clin Invest 127(11):4193–4206. https://doi.org/10.1172/JCI92852

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kazenwadel J, Betterman KL, Chong C-E, Stokes PH, Lee YK, Secker GA, Agalarov Y, Demir CS, Lawrence DM, Sutton DL, Tabruyn SP, Miura N, Salminen M, Petrova TV, Matthews JM, Hahn CN, Scott HS, Harvey NL (2015) GATA2 is required for lymphatic vessel valve development and maintenance. J Clin Invest 125(8):2979–2994. https://doi.org/10.1172/JCI78888

    Article  PubMed  PubMed Central  Google Scholar 

  35. Haiko P, Makinen T, Keskitalo S, Taipale J, Karkkainen MJ, Baldwin ME, Stacker SA, Achen MG, Alitalo K (2008) Deletion of vascular endothelial growth factor C (VEGF-C) and VEGF-D is not equivalent to VEGF receptor 3 deletion in mouse embryos. Mol Cell Biol 28(15):4843–4850. https://doi.org/10.1128/MCB.02214-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kang J, Yoo J, Lee S, Tang W, Aguilar B, Ramu S, Choi I, Otu HH, Shin JW, Dotto GP, Koh CJ, Detmar M, Hong Y-K (2010) An exquisite cross-control mechanism among endothelial cell fate regulators directs the plasticity and heterogeneity of lymphatic endothelial cells. Blood 116(1):140–150. https://doi.org/10.1182/blood-2009-11-252270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Coso S, Bovay E, Petrova TV (2014) Pressing the right buttons: signaling in lymphangiogenesis. Blood 123(17):2614–2624. https://doi.org/10.1182/blood-2013-12-297317

    Article  CAS  PubMed  Google Scholar 

  38. Hägerling R, Pollmann C, Andreas M, Schmidt C, Nurmi H, Adams RH, Alitalo K, Andresen V, Schulte-Merker S, Kiefer F (2013) A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J 32(5):629–644. https://doi.org/10.1038/emboj.2012.340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang Y, García-Verdugo JM, Soriano-Navarro M, Srinivasan RS, Scallan JP, Singh MK, Epstein JA, Oliver G (2012) Lymphatic endothelial progenitors bud from the cardinal vein and intersomitic vessels in mammalian embryos. Blood 120(11):2340–2348. https://doi.org/10.1182/blood-2012-05-428607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Monteiro RM, de Sousa Lopes SMC, Bialecka M, de Boer S, Zwijsen A, Mummery CL (2008) Real time monitoring of BMP Smads transcriptional activity during mouse development. Genesis 46(7):335–346. https://doi.org/10.1002/dvg.20402

    Article  CAS  PubMed  Google Scholar 

  41. Beets K, Staring MW, Criem N, Maas E, Schellinx N, de Sousa Lopes SMC, Umans L, Zwijsen A (2016) BMP-SMAD signalling output is highly regionalized in cardiovascular and lymphatic endothelial networks. BMC Dev Biol 16(1):34. https://doi.org/10.1186/s12861-016-0133-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bertozzi CC, Schmaier AA, Mericko P, Hess PR, Zou Z, Chen M, Chen C-Y, Xu B, Lu M-m, Zhou D, Sebzda E, Santore MT, Merianos DJ, Stadtfeld M, Flake AW, Graf T, Skoda R, Maltzman JS, Koretzky GA, Kahn ML (2010) Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 116(4):661–670. https://doi.org/10.1182/blood-2010-02-270876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhou F, Chang Z, Zhang L, Hong Y-K, Shen B, Wang B, Zhang F, Lu G, Tvorogov D, Alitalo K, Hemmings BA, Yang Z, He Y (2010) Akt/Protein kinase B is required for lymphatic network formation, remodeling, and valve development. Am J Pathol 177(4):2124–2133. https://doi.org/10.2353/ajpath.2010.091301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Graef IA, Chen F, Chen L, Kuo A, Crabtree GR (2001) Signals transduced by Ca(2+)/calcineurin and NFATc3/c4 pattern the develo** vasculature. Cell 105(7):863–875. https://doi.org/10.1016/s0092-8674(01)00396-8

    Article  CAS  PubMed  Google Scholar 

  45. Sabine A, Agalarov Y, Maby-El Hajjami H, Jaquet M, Hägerling R, Pollmann C, Bebber D, Pfenniger A, Miura N, Dormond O, Calmes J-M, Adams RH, Mäkinen T, Kiefer F, Kwak BR, Petrova TV (2012) Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev Cell 22(2):430–445. https://doi.org/10.1016/j.devcel.2011.12.020

    Article  CAS  PubMed  Google Scholar 

  46. Kulkarni RM, Greenberg JM, Akeson AL (2009) NFATc1 regulates lymphatic endothelial development. Mech Dev 126(5–6):350–365. https://doi.org/10.1016/j.mod.2009.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bautista DM, Jordt S-E, Nikai T, Tsuruda PR, Read AJ, Poblete J, Yamoah EN, Basbaum AI, Julius D (2006) TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 124(6):1269–1282. https://doi.org/10.1016/j.cell.2006.02.023

    Article  CAS  PubMed  Google Scholar 

  48. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D (2000) Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 288(5464):306–313. https://doi.org/10.1126/science.288.5464.306

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Song, K.S. Ko, and S. Lee for technical assistance in animal experiments. We also thank Dr. T. Makinen (Uppsala University, Uppsala, Sweden) for providing Prox1-CreER mice. This work was supported by Barrow Neurological Foundation, Leducq Foundation (ATTRACT), Department of Defense (PR161205), and NIH (HL128525) to S.P.O., and Korea Mouse Phenoty** Project [Grant Number NRF-2014M3A9D5A01073528] of the Ministry of Science and ICT through the National Research Foundation (NRF) to Y.J.L., in part by NRF Grant funded by the Ministry of Science and ICT [Grant Number NRF-2017R1A2B4003322] to Y.J.L.

Author information

Authors and Affiliations

Authors

Contributions

EHM, YHK, YJL, and SPO contributed to the study conception and design. Material preparation, data collection, and analysis were performed by all authors. The manuscript was written by EHM, YHK, YJL, and SPO and all authors commented on the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Young Jae Lee or S. Paul Oh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 89481 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, EH., Kim, Y.H., Vu, PN. et al. TMEM100 is a key factor for specification of lymphatic endothelial progenitors. Angiogenesis 23, 339–355 (2020). https://doi.org/10.1007/s10456-020-09713-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-020-09713-1

Keywords

Navigation