Log in

Community structure and concordance patterns among zooplankton life stages in subtropical temporary ponds

  • Published:
Aquatic Ecology Aims and scope Submit manuscript

Abstract

In this study, we assessed the community structure (species richness and composition) and examined concordance patterns between the active and dormant life stages of the zooplankton (Rotifera, Cladocera and Copepoda) in Southern Brazilian temporary ponds. We also examined pairwise concordance patterns in the species richness and composition between each taxonomic group. We recorded 77 species in the study area. Active communities had higher species richness and a higher number of exclusive species compared to the dormant community. Low concordance was observed in the species richness and composition of the active and dormant communities. Significant patterns were detected between similar life stages of zooplankton taxonomic groups. We found significant concordance between the species richness of dormant stages of Cladocera and Rotifera, and between the active stages of Cladocera and Copepoda. We also detected significant concordant patterns in the similarity for composition of the active stages of Cladocera and Copepoda, and of Rotifera and Copepoda. The lack of concordance between life stages indicates that the dormant communities are not adequate surrogates of the overall diversity of the zooplankton in Southern Brazilian temporary wetlands, at least under similar experimental incubation conditions. However, there is initial evidence that cladocerans and copepods can be employed as surrogates of other zooplankton groups, if the conclusions are strictly limited to active stages of the community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allan JD (1976) Life history patterns in zooplankton. Am Nat 110:165–180

    Google Scholar 

  • Allen AP, Whittier TR, Larsen DP, Kaufmann PR, O'Connor RJ, Hughes RM, Stemberger RS, Dixit SS, Brinkhurst RO, Herlihy AT, Paulsen SG (1999) Concordance of taxonomic composition patterns across multiple lake assemblages: effects of scale, body size, and land use. Can J Fish Aquat Sci 56:2029–2040

    Google Scholar 

  • Anderson MJ, Walsh DC (2013) PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr 83:557–574

    Google Scholar 

  • Araújo LR, Lopes PM, Santangelo JM, Petry AC, Bozelli RL (2013) Zooplankton resting egg banks in permanent and temporary tropical aquatic systems. Acta Limnol Bras 25:235–245

    Google Scholar 

  • Ávila AC, Boelter T, Santos RM, Stenert C, Würdig NL, Rocha O, Maltchik L (2014) The effects of different rice cultivation systems and ages on resting stages of wetland invertebrates in southern Brazil. Mar Freshw Res 66:276–285

    Google Scholar 

  • Bertuzzi T, Pires MM, Maltchik L (2019) Drivers of the beta diversity of aquatic plant communities along a latitudinal gradient in southern Brazilian coastal ponds. J Veg Sci 30:281–290

    Google Scholar 

  • Bessa GF, Vieira LCG, Bini LM, Dos Reis DF, De Morais PB (2011) Concordance patterns in zooplankton assemblages in the UHE-Luís Eduardo Magalhães reservoir in the Mid-Tocantins river, Tocantins State, Brazil. Acta Sci Biol Sci 33:179–184

    Google Scholar 

  • Bini LM, Galli Vieira LC, Machado J, Machado Velho LF (2007) Concordance of species composition patterns among microcrustaceans, rotifers and testate amoebae in a shallow pond. Int Rev Hydrobiol 92:9–22

    Google Scholar 

  • Bini LM, Da Silva LCF, Velho LFM, Bonecker CC, Lansac-Tôha FA (2008) Zooplankton assemblage concordance patterns in Brazilian reservoirs. Hydrobiologia 598:247–255

    Google Scholar 

  • Brendonck L, De Meester L (2003) Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491:65–84

    Google Scholar 

  • Brendonck L, Pinceel T, Ortells R (2017) Dormancy and dispersal as mediators of zooplankton population and community dynamics along a hydrological disturbance gradient in inland temporary pools. Hydrobiologia 796:201–222

    CAS  Google Scholar 

  • Brock MA, Nielsen DL, Shiel RJ, Green JD, Langley JD (2003) Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshw Biol 48:1207–1218

    Google Scholar 

  • Cáceres CE, Tessier AJ (2004) To sink or swim: variable diapause strategies among Daphnia species. Limnol Oceanogr 49:1333–1340

    Google Scholar 

  • Chen H, Boutros PC (2011) Venn Diagram: a package for the generation of highly-customizable Venn and Euler diagrams in R. BMC Biol 12:35

    Google Scholar 

  • Clarke KR, Warwick RM (2001) Change in marine communities. An approach to statistical analysis and interpretation. Primer-E Ltd, Plymouth

    Google Scholar 

  • Coronel JS, Aguilera X, Declerck S, Brendonck L (2009) Resting egg bank reveals high cladoceran species richness in high-altitude temporary peat land pools. Rev Bol Ecol y Cons Amb 25:51–67

    Google Scholar 

  • Crispim MC, Watanabe T (2001) What can dry reservoir sediments in a semi-arid region in Brazil tell us about cladocera? Hydrobiologia 442:101–105

    Google Scholar 

  • De Bie T, De Meester L, Brendonck L, Martens K, Goddeeris B, Ercken D, Hampel H, Denys L, Vanhecke L, Van Der Gucht K, Van Wichelen J, Vyverman W, Declerck SAJ (2012) Body size and dispersal mode as key traits determining metacommunity structure of aquatic organisms. Ecol Lett 15:740–747

    PubMed  Google Scholar 

  • De Meester L, De Jager H (1993) Hatching of Daphnia sexual eggs. II. The effect of age and a second stimulus. Freshw Biol 30:227–233

    Google Scholar 

  • De Stasio BT (1989) The seed bank of a freshwater crustacean: copepodology for the plant ecologist. Ecology 70:1377–1389

    Google Scholar 

  • Dole-Olivier MJ, Galassi DMP, Marmonier P, Creuzé des Châtelliers M (2000) The biology and ecology of lotic microcrustaceans. Freshw Biol 44:63–91

    Google Scholar 

  • Duggan IC, Green JD, Shiel R (2002) Rotifer resting egg densities in lakes of different trophic state, and their assessment using emergence and egg counts. Arch Hydrobiol 153:409–420

    Google Scholar 

  • Elmoor-Loureiro LMA (1997) Manual de identificação de cladóceros límnicos do Brasil. Universa, Brasília

    Google Scholar 

  • Elmoor-Loureiro LMA (2000) Cladóceros do Brasil: famílias Chydoridae e Eurycercidae. https://cladocera.wordpress.com. Accessed 19 Aug 2018

  • Freiry RF, Esquinatti FM, Stenert C, Arenzon A, Nielsen DL, Maltchik L (2016) Effects of spatial scale and habitat on the diversity of diapausing wetland invertebrates. Aquat Biol 25:173–181

    Google Scholar 

  • Frisch D, Green AJ (2007) Copepods come in first: rapid colonization of new temporary ponds. Fund Appl Limnol 4:289–297

    Google Scholar 

  • García-Roger EM, Carmona MJ, Serra M (2006) Patterns in rotifer diapausing egg banks: density and viability. J Exp Mar Biol Ecol 336:198–210

    Google Scholar 

  • García-Roger EM, Armengol-Díaz X, Carmona MJ, Serra M (2008) Assessing rotifer diapausing egg bank diversity and abundance in brackish temporary environments: an ex situ sediment incubation approach. Fundam Appl Limnol 173:79–88

    Google Scholar 

  • Gazulha V (2012) Zooplânctonlímnico: manual ilustrado. Technical Books, Rio de Janeiro

    Google Scholar 

  • Gerhard M, Iglesias C, Clemente JM, Goyenola G, Meerhoff M, Pacheco JP, Teixeira de Mello F, Mazzeo N (2016) What can resting egg banks tell about cladoceran diversity in a shallow subtropical lake? Hydrobiologia 798:75–86

    Google Scholar 

  • Gomes LF, Vieira LCG, Bonnet MP (2015) Two practical approaches to monitoring the zooplanktonic community at Lago Grande do Curuai, Pará, Brazil. Acta Amaz 45:293–298

    Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Google Scholar 

  • Gyllström M, Hansson LA (2004) Dormancy in freshwater zooplankton: induction, termination and the importance of benthic-pelagic coupling. Aquat Sci 66:274–295

    Google Scholar 

  • Heino J (2010) Are indicator groups and cross-taxon congruence useful for predicting biodiversity in aquatic ecosystems? Ecol Indic 10:112–117

    Google Scholar 

  • Hsieh TC, Ma KH, Chao A, Hsieh MT (2019) Package iNEXT (ver. 2.0.19)

  • Iglesias C, Mazzeo N, Meerhoff M, Lacerot G, Clemente JM, Scasso F, Kruk C, Goyenola G, García-Alonso J, Amsinck SL, Paggi JC, Paggi SJ, Jeppesen E (2011) High predation is of key importance for dominance of small-bodied zooplankton in warm shallow lakes: evidence from lakes, fish exclosures and surface sediments. Hydrobiologia 667:133–147

    Google Scholar 

  • Iglesias C, Bonecker C, Brandao L, Crispim MC, Eskinazi-Sant'Anna EM, Gerhard M, Portinho JL, Maia-Barbosa P, Panarelli E, Santangelo JM (2016) Current knowledge of South American cladoceran diapause. Int Rev Hydrobiol 101:91–104

    Google Scholar 

  • Jackson DA, Harvey HH (1993) Fish and benthic invertebrates: community concordance and community–environment relationships. Can J Fish Aquat Sci 50:2641–2651

    Google Scholar 

  • Knauth DS, Pires MM, Stenert C, Maltchik L (2019) Disentangling the role of niche-based and spatial processes on anuran beta diversity in temporary ponds along a forest-grassland transition. Aquat Sci 81:63

    Google Scholar 

  • Koste W (1978) Rotatoria. Die Rädertiere Mitteleuropas Ein Bestimmungswerk, begründet von Max Voigt Überordnung Monogononta. Gebrüder Borntraeger, Stuttgart

    Google Scholar 

  • Kurki H, Vuorinen I, Bosma E, Bwebwa D (1999) Spatial and temporal changes in copepod zooplankton communities of Lake Tanganyika. In: Lindqvist OV, Mölsä H, Salonen K, Sarvala J (eds) From limnology to fisheries: lake Tanganyika and other large lakes. Developments in Hydrobiology, Dordrecht, pp 105–114

    Google Scholar 

  • Lansac-Toha FM, Heino J, Quirino BA, Moresco GA, Pelaez O, Meira BR, Rodrigues L, Jati S, Lansac-Toha FA, Velho LFM (2019) Differently dispersing organism groups show contrasting beta diversity patterns in a dammed subtropical river basin. Sci Total Environ 691:1271–1281

    CAS  PubMed  Google Scholar 

  • Larsen S, Mancini L, Pace G, Scalici M, Tancioni L (2012) Weak concordance between fish and macroinvertebrates in Mediterranean streams. PLoS ONE 7:e51115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Litchman E, Ohman MD, Kiørboe T (2013) Trait-based approaches to zooplankton communities. J Plankton Res 35:473–484

    Google Scholar 

  • Lopes PM, Caliman A, Carneiro LS, Bini LM, Esteves FA, Farjalla V, Bozelli RL (2011) Concordance among assemblages of upland Amazonian lakes and the structuring role of spatial and environmental factors. Ecol Indic 11:1171–1176

    Google Scholar 

  • Lopes PM, Bozelli R, Bini LM, Santangelo JM, Declerck SA (2016) Contributions of airborne dispersal and dormant propagule recruitment to the assembly of rotifer and crustacean zooplankton communities in temporary ponds. Freshw Biol 61:658–669

    Google Scholar 

  • Maltchik L (2003) Inventory of wetlands of Rio Grande do Sul (Brazil). Pesquisas Bot 53:89–100

    Google Scholar 

  • Matsumura-Tundisi T (1986) Latitudinal distribution of Calanoida copepods in freshwater aquatic systems of Brazil. Braz J Biol 46(527):553

    Google Scholar 

  • Meurant M, Gonzalez A, Doxa A, Albert CH (2018) Selecting surrogate species for connectivity conservation. Biol Conserv 227:326–334

    Google Scholar 

  • Missias ACDA, Gomes LF, Pereira HR, Silva LCFD, Angelini R, Vieira LCG (2017) Is it possible to simplify environmental monitoring? Approaches with zooplankton in a hydroelectric reservoir. Acta Limnol Bras 29:e8

    Google Scholar 

  • Nielsen DL, Smith FJ, Hillman TJ, Shiel RJ (2000) Impact of water regime and fish predation on zooplankton resting egg production and emergence. J Plankton Res 22:433–446

    Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, Mcglinn D, Minchin PR, O’Hara RB (2019) Vegan: community ecology package (ver. 2.5-6)

  • Paavola R, Muotka T, Virtanen R, Heino J, Kreivi P (2003) Are biological classifications of headwater streams concordant across multiple taxonomic groups? Freshw Biol 48:1912–1923

    Google Scholar 

  • Padial AA, Declerck SA, De Meester L, Bonecker CC, Lansac-Tôha FA, Rodrigues LC, Takeda A, Train S, Velho LFM, Bini LM (2012) Evidence against the use of surrogates for biomonitoring of Neotropical floodplains. Freshw Biol 57:2411–2423

    Google Scholar 

  • Palazzo F, Bonecker CC, Fernandes APC (2008a) Resting cladoceran eggs and their contribution to zooplankton diversity in a lagoon of the Upper Paraná River floodplain. Lake Reserv Manag 13:207–214

    Google Scholar 

  • Palazzo F, Bonecker CC, Nagae MY (2008b) Zooplankton dormancy forms in two environments of the upper Paraná River floodplain (Brazil). Acta Limnol Bras 20:55–62

    Google Scholar 

  • Panarelli EA, Casanova SMC, Henry R (2008) The role of resting eggs in the recovery of zooplankton community in a marginal lake of the Paranapanema River (São Paulo, Brazil), after a long drought period. Acta Limnol Bras 20:73–88

    Google Scholar 

  • Perbiche-Neves G (2011) Copépodes planctônicos (Crustacea, Calanoida e Cyclopoida) em reservatórios e trechos lóticos da bacia do rio da Prata (Brasil, Paraguai, Argentina e Uruguai): taxonomia, distribuição geográfica e alguns atributos ecológicos. Ph.D. thesis, Universidade Estadual Paulista

  • Pinceel T, Vanschoenwinkel B, Hawinkel W, Tuytens K, Brendonck L (2017) Aridity promotes bet hedging via delayed hatching: a case study with two temporary pond crustaceans along a latitudinal gradient. Oecologia 184:161–170

    PubMed  Google Scholar 

  • Pires MM, Stenert C, Maltchik L (2018) Drivers of beta diversity of Odonata along a forest–grassland transition in southern Brazilian coastal ponds. Freshw Sci 37:357–366

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (ver. 3.5.1). http://www.R-project.org/

  • Reid JW (1985) Chave de identificação para as espécies continentais sulamericanas de vida livre da ordem Cyclopoida (Crustacea, Copepoda). Boletim de Zoologia 9:17–143

    Google Scholar 

  • Ricci C (2001) Dormancy patterns in rotifers. Hydrobiologia 446:1–11

    Google Scholar 

  • Santangelo JM, Lopes PM, Nascimento MO, Fernandes APC, Bartole S, Figueiredo-Barros MP, Leal JJF, Esteves FA, Farjalla VF, Bonecker CC, Bozelli RL (2015) Community structure of resting egg banks and concordance patterns between dormant and active zooplankters in tropical lakes. Hydrobiologia 758:183–195

    Google Scholar 

  • Segers H (2004) Rotifera-Monogononta. In: Yule CM, Yong HS (eds) Freshwater invertebrates of the Malaysia Region. Academy of Sciences and Monash University, Kuala Lumpur, pp 112–116

    Google Scholar 

  • Silva WMD (2003) Diversidade dos Cyclopoida (Copepoda, Crustácea) de água doce do estado de São Paulo: taxonomia, ecologia e genética. Ph.D. thesis, Universidade Federal de São Carlos

  • Souza CAD, Machado KB, Nabout JC, Muniz DHDF, Oliveira-Filho EC, Kraus CN, Ribeiro RJC, Vieira LCG (2019) Monitoring simplification in plankton communities using different ecological approaches. Acta Limnol Bras 31:e20

    Google Scholar 

  • Stenert C, Bacca RC, Ávila AC, Maltchik L, Rocha O (2010) Do hydrologic regimes used in rice fields compromise the viability of resting stages of aquatic invertebrates? Wetlands 30:989–996

    Google Scholar 

  • Stenert C, Wüsth R, Pires MM, Freiry RF, Nielsen D, Maltchik L (2017) Composition of cladoceran dormant stages in intermittent ponds with different hydroperiod lengths. Ecol Res 32:921–930

    Google Scholar 

  • Teasdale M, Vopel K, Thistle D (2004) The timing of benthic copepod emergence. Limnol Oceanogr 49:884–889

    Google Scholar 

  • Vandekerkhove J, Declerck S, Jeppesen E, Conde-Porcuna JM, Brendonck L, De Meester L (2005a) Dormant propagule banks integrate spatio-temporal heterogeneity in cladoceran communities. Oecologia 142:109–116

    PubMed  Google Scholar 

  • Vandekerkhove J, Declerck S, Brendonck L, Conde-Porcuna JM, Jeppesen E, Johansson LS, De Meester L (2005b) Uncovering hidden species: hatching diapausing eggs for the analysis of cladoceran species richness. Limnol Oceanogr Methods 3:399–407

    Google Scholar 

  • Vanschoenwinkel B, Seaman M, Brendonck L (2010) Hatching phenology, life history and egg bank size of fairy shrimp Branchipodopsis spp. (Branchiopoda, Crustacea) in relation to the ephemerality of their rock pool habitat. Aquat Ecol 44:771–780

    Google Scholar 

  • Vargas AL, Santangelo JM, Bozelli RL (2019) Recovery from drought: Viability and hatching patterns of hydrated and desiccated zooplankton resting eggs. Int Rev Hydrobiol 104:26–33

    Google Scholar 

  • Vieira LCG, Ribeiro HR, Vital MV, Da Silva LC, de Souza ACB, Pinheiro RC, Bini LM (2014) Concordance among aquatic communities in a tropical irrigation system. Nat Conserv 12:36–41

    Google Scholar 

  • Vieira LCG, Padial AA, Velho LFM, Carvalho P, Bini LM (2015) Concordance among zooplankton groups in a near-pristine floodplain system. Ecol Indic 58:374–381

    Google Scholar 

  • Villwock JA, Tomazelli LJ (2006) Planície Costeira do Rio Grande do Sul: gênese e paisagem atual. In: Becker FG, Ramos RA, Moura LA (eds) Biodiversidade. Regiões da Lagoa do Casamento e dos Butiazais de Tapes, Planície Costeira do Rio Grande do Sul. Ministério do Meio Ambiente, Brasília, pp 20–33

    Google Scholar 

  • Walsh MR (2013) The link between environmental variation and evolutionary shifts in dormancy in zooplankton. Integr Comp Biol 53:713–722

    PubMed  Google Scholar 

  • Waterkeyn A, Vanschoenwinkel B, Vercampt H, Grillas P, Brendonck L (2011) Long-term effects of salinity and disturbance regime on active and dormant crustacean communities. Limnol Oceanogr 56:1008–1022

    Google Scholar 

  • Wiens JA, Hayward GD, Holthausen RS, Wisdom MJ (2008) Using surrogate species and groups for conservation planning and management. Bioscience 58:241–252

    Google Scholar 

  • Zokan M, Drake JM (2015) The effect of hydroperiod and predation on the diversity of temporary pond zooplankton communities. Ecol Evol 5:3066–3074

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the Brazilian National Council for Scientific and Technological Development (CNPq—Grant Number 474892/2013-1). LM, CS and FALT hold CNPq Research Productivity grants. FMLT received a Ph.D. scholarship from CNPq. RFF received a Ph.D. scholarship from CAPES (Coordination for the Improvement of Higher Level Personnel), and MMP received a postdoctoral fellowship from CNPq at UNISINOS Biology Graduate Program (Grant Number 151152/2018-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Maltchik.

Additional information

Handling Editor: Télesphore Sime-Ngando

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freiry, R.F., Gouvea, A., Becker, J. et al. Community structure and concordance patterns among zooplankton life stages in subtropical temporary ponds. Aquat Ecol 54, 257–270 (2020). https://doi.org/10.1007/s10452-019-09740-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10452-019-09740-1

Keywords

Navigation