Log in

Water adsorption with hysteresis effect onto microporous activated carbon fabrics

  • Published:
Adsorption Aims and scope Submit manuscript

Abstract

Understanding the adsorption of water vapor onto activated carbons is important for designing processes to remove dilute contaminants from humid gas streams, such as providing protection against chemical warfare agents (CWAs), or against toxic industrial compounds (TICs) used in a terrorist chemical attack. Water vapor isotherms for Calgon BPL granular activated carbon (GAC), military ASZM-TEDA GAC, electrospun activated carbon nanofibers (ACnF), Calgon Zorflex activated carbon cloth, and Novoloid-based activated carbon fiber cloth (ACFC) are presented. Of particular interest are the ACFC isotherms, which exhibit an unusually high degree of hydrophobicity. The ACFC isotherms also show a correlation between water vapor adsorption hysteresis and the level of activation. Water vapor isotherm models from the literature are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

Distribution constant for Mahle equation

a :

Amount adsorbed at a given p r

a c :

Constant for DS4 equation

a f :

Capacity of functional site part of Do & Do type equations

a I :

Capacity of type I term of Stoeckli formula, or capacity of Ising term in Extended CMMS equation

a L :

Capacity of Langmuir term of Extended CMMS formula

a m :

Capacity constant in Talu–Meunier equation

a o :

Pore capacity

a p :

Concentration of primary sites

a V :

Capacity of type V term in Stoeckli equation

a μ :

Capacity of microporous part of Do & Do type equations

B :

Distribution constant for Mahle equation

c :

Henry’s Law coefficient for DS equations

E o :

Reference energy

H :

Proportionality constant in Talu–Meunier equation

K :

Constant for Lagorsse equation

K a :

Langumuir-type constant for adsorption part of Lagorsse equation

K as :

Shape constant for CMMS equation

K d :

Langmuir-type constant for desorption part of Lagorsse equation

K f :

Langmuir-type constant for functional site part of Do & Do type equations

K μ :

Langmuir type constant for microporous part of Do & Do type equations

k :

Constant for QHR equation

k o :

Langmuir-type constant for CMMS equations

k 1 :

Constant for CMMS equations

k L :

Langmuir constant

k t :

Constant in Talu–Meunier equation

N :

Number of terms to sum

n :

Dubinin–Astakhov exponent

n I ,n V :

Stoeckli exponents

p 50 :

Relative pressure at 50% of a o adsorbed

p r :

Relative pressure of water (relative humidity)

R g :

Universal gas constant

T :

Temperature

β :

Energy coefficient of an adsorbate–adsorbent system (β E o =E, the affinity energy of the system)

β I ,β V :

Energy coefficient of each term in the Stoeckli formula

κ :

Fitting parameter for Dubinin–Serpinsky type equations

ξ i :

Fitting parameters for LeVan equation

References

  • Barton, S.S., Evans, M.J.B., et al.: The adsorption of water vapor by porous carbon. Carbon 29(8), 1099–1105 (1991)

    Article  CAS  Google Scholar 

  • Barton, S.S., Evans, M.J.B., et al.: An equation describing water vapour absorption on porous carbon. Carbon 30(1), 123–124 (1992)

    Article  CAS  Google Scholar 

  • Brennan, J.K., Bandosz, T.J., et al.: Water in porous carbons. Colloids Surf. A: Physicochem. Eng. Aspects 187–188, 539–568 (2001)

    Article  Google Scholar 

  • Cal, M.P., Rood, M.J., et al.: Removal of VOCs from humidified gas streams using activated carbon cloth. Gas Sep. Purif. 10(2), 117–121 (1996)

    Article  CAS  Google Scholar 

  • Dimotakis, E., Cal, M., et al.: Water vapor adsorption on chemically treated activated carbon cloths. Chem. Mater. 7(12), 2269–2272 (1995a)

    Article  CAS  Google Scholar 

  • Dimotakis, E.D., Cal, M.P., et al.: Chemically treated activated carbon cloths for removal of volatile organic carbons from gas streams: evidence for enhanced physical adsorption. Environ. Sci. Technol. 29(7), 1876–1880 (1995b)

    Article  CAS  Google Scholar 

  • Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998)

    Google Scholar 

  • Do, D.D., Do, H.D.: A model for water adsorption in activated carbon. Carbon 38(5), 767–773 (2000)

    Article  CAS  Google Scholar 

  • Doong, S.J., Yang, R.T.: Adsorption of mixtures of water vapor and hydrocarbons by activated carbon beds: Thermodynamic model for adsorption equilibrium and adsorber dynamics. AIChE Symposium Series: Adsorption and Ion Exchange 84(259), 87–97 (1987)

    Google Scholar 

  • Dubinin, M.M.: Water vapor adsorption and the microporous structures of carbonaceous adsorbents. Carbon 18(5), 355–364 (1980)

    Article  CAS  Google Scholar 

  • Dubinin, M.M., Serpinsky, V.V.: Isotherm equation for water vapor adsorption by microporous carbonaceous adsorbents. Carbon 19(5), 402–403 (1981)

    Article  CAS  Google Scholar 

  • Gauden, P.A.: Does the Dubinin–Serpinsky theory adequately describe water adsorption on adsorbents with high-energy centers? J. Colloid Interface Sci. 282(2), 249–260 (2005)

    Article  CAS  Google Scholar 

  • Furmaniak, S., Gauden, P.A., et al.: Heterogeneous Do–Do model of water adsorption on carbons. J. Colloid Interface Sci. 290(1), 1–13 (2005)

    Article  CAS  Google Scholar 

  • Hashisho, Z., Emamipour, H., et al.: Rapid response concentration-controlled desorption of activated carbon to dampen concentration fluctuations. Environ. Sci. Technol. 41(5), 1753–1758 (2007)

    Article  CAS  Google Scholar 

  • Hayes, J.S., Jr.: Novoloid fibers. In: Kirk-Othmer: Encyclopedia of Chemical Technology, vol. 16, pp. 125–138. Wiley, New York (1981)

  • Huggahalli, M., Fair, J.R.: Prediction of equilibrium adsorption of water onto activated carbon. Ind. Eng. Chem. Res. 35(6), 2071–2074 (1996)

    Article  CAS  Google Scholar 

  • Kimura, T., Kanoh, H., et al.: Cluster-associated filling of water in hydrophobic carbon micropores. J. Phys. Chem. B 108(37), 14043–14048 (2004)

    Article  CAS  Google Scholar 

  • Lagorsse, S., Campo, M.C., et al.: Water adsorption on carbon molecular sieve membranes: experimental data and isotherm model. Carbon 43(13), 2769–2779 (2005)

    Article  CAS  Google Scholar 

  • Qi, N., LeVan, M.D.: Adsorption equilibrium modeling for water on activated carbons. Carbon 43(11), 2258–2263 (2005)

    Article  CAS  Google Scholar 

  • Li, L., Quinlivan, P.A., et al.: Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution. Carbon 40(12), 2085–2100 (2002)

    Article  CAS  Google Scholar 

  • Liu, J.C., Monson, P.A.: Does water condense in carbon pores? Langmuir 21(22), 10219–10225 (2005)

    Article  CAS  Google Scholar 

  • Liu, J.C., Monson, P.A.: Monte Carlo simulation study of water adsorption in activated carbon. Ind. Eng. Chem. Res. 45(16), 5649–5656 (2006)

    Article  CAS  Google Scholar 

  • Mahle, J.J.: An adsorption equilibrium model for Type 5 isotherms. Carbon 40(15), 2753–2759 (2002)

    Article  CAS  Google Scholar 

  • Mangun, C.L., Benak, K.R., et al.: Oxidation of activated carbon fibers: effect on pore size, surface chemistry, and adsorption properties. Chem. Mater. 11(12), 3476–3483 (1999)

    Article  CAS  Google Scholar 

  • Mays, T.J.: Active carbon fibers. In: Burchell, T.D. (ed.) Carbon Materials for Advanced Technologies, pp. 95–118. Pergamon, New York (1999)

    Google Scholar 

  • Menendez, J.A., Phillips, J., et al.: On the modification and characterization of chemical surface properties of activated carbon: In the search of carbons with stable basic properties. Langmuir 12(18), 4404–4410 (1996)

    Article  CAS  Google Scholar 

  • Ohba, T., Kaneko, K.: Cluster-associated filling of water molecules in slit-shaped graphitic nanopores. Mol. Phys. 105(2), 139–145 (2007)

    Article  CAS  Google Scholar 

  • Petkovska, M., Mitrovic, M.: One-dimensional, nonadiabatic, microscopic model of electrothermal desorption process dynamics. Chem. Eng. Res. Des. 72(A6), 713–722 (1994)

    CAS  Google Scholar 

  • Qi, S., Hay, K.J., et al.: Isotherm equation for water vapor adsorption onto activated carbon. J. Environ. Eng. 124(11), 1130–1134 (1998)

    Article  CAS  Google Scholar 

  • Rudisill, E.N., Hacskaylo, J.J., et al.: Coadsorption of hydrocarbons and water on BPL activated carbon. Ind. Eng. Chem. Res. 31(4), 1122–1130 (1992)

    Article  CAS  Google Scholar 

  • Rutherford, S.W.: Application of cooperative multimolecular sorption theory for characterization of water adsorption equilibrium in carbon. Carbon 41(3), 622–625 (2003)

    Article  CAS  Google Scholar 

  • Rutherford, S.W.: Modeling water adsorption in carbon micropores: study of water in carbon molecular sieves. Langmuir 22(2), 702–708 (2006)

    Article  CAS  Google Scholar 

  • Stoeckli, F.: Water adsorption in activated carbons of various degrees of oxidation described by the Dubinin equation. Carbon 40(6), 969–971 (2002)

    Article  CAS  Google Scholar 

  • Subrenat, A.S., Le Cloirec, P.A.: Volatile organic compound (VOC) removal by adsorption onto activated carbon fiber cloth and electrothermal desorption: an industrial application. Chem. Eng. Commun. 193(4), 478–486 (2006)

    Article  CAS  Google Scholar 

  • Sullivan, P.D., Rood, M.J., et al.: Adsorption and electrothermal desorption of hazardous organic vapors. J. Environ. Eng. 127(3), 217–223 (2001)

    Article  CAS  Google Scholar 

  • Sun, J., Chen, S., et al.: Correlating N2 and CH4 adsorption on microporous carbon using a new analytical model. Energy Fuels 12(6), 1071–1078 (1998)

    Article  CAS  Google Scholar 

  • Talu, O., Francis, M.: Adsorption of associating water molecules in micropores and application to water on carbon. AIChE J. 42(3), 809–819 (1996)

    Article  CAS  Google Scholar 

  • Vidal, E.X., Ramirez, D., et al.: Bench-scale and pilot-scale electrothermal-swing adsorption systems for the capture and recovery of hazardous air pollutants. In: Proceedings of the Air and Waste Management Association’s Annual Conference and Exhibition, AWMA (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick D. Sullivan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sullivan, P.D., Stone, B.R., Hashisho, Z. et al. Water adsorption with hysteresis effect onto microporous activated carbon fabrics. Adsorption 13, 173–189 (2007). https://doi.org/10.1007/s10450-007-9033-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-007-9033-5

Keywords

Navigation