Log in

Global Stabilization for Systems Evolving on Manifolds

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract.

We show that any globally asymptotically controllable system on any smooth manifold can be globally stabilized by a state feedback. Since we allow discontinuous feedbacks, we interpret the solutions of our systems in the “sample and hold” sense introduced by Clarke, Ledyaev, Sontag, and Subbotin (CLSS). We generalize their theorem which is the special case of our result for systems on Euclidean space. We apply our result to the input-to-state stabilization of systems on manifolds with respect to actuator errors, under small observation noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. F. Albertini and E. D. Sontag, Continuous control-Lyapunov functions for asymptotically controllable time-varying systems. Int. J. Control 72 (1999), 1630–1641.

    Article  MATH  MathSciNet  Google Scholar 

  2. 2. F. Ancona and A. Bressan, Patchy vector fields and asymptotic stabilization. ESAIM Control Optim. Calc. Var. 4 (1999), 445–471.

    Article  MATH  MathSciNet  Google Scholar 

  3. 3. _______, Flow stability of patchy vector fields and robust feedback stabilization. SIAM J. Control Optim. 41 (2003), 1455–1476.

    Article  MATH  MathSciNet  Google Scholar 

  4. 4. D. Angeli, An almost global notion of input-to-state stability. IEEE Trans. Automat. Control 49 (2004), 866–874.

    Article  MathSciNet  Google Scholar 

  5. 5. W. Boothby, An introduction to differentiable manifolds and Riemannian eometry. Academic Press, New York (2003).

    Google Scholar 

  6. 6. G. Bredon, Topology and eometry. Grad. Texts Math. Vol. 139, Springer-Verlag, New York (1993).

    Google Scholar 

  7. 7. R. Brockett, Asymptotic stability and feedback stabilization. In: Differential Geometric Control Theory (R. Brockett, R. Millman, and H. Sussmann, eds.) Birkhäuser, Boston (1983), pp. 181–191.

    Google Scholar 

  8. 8. F. Bullo, R. Murray, and A. Sarti, Control on the sphere and reduced attitude stabilization. CDS Technical Report 95-005; Proc. Nonlinear Control Systems Design (NOLCOS), Tahoe City, CA, June 1995, pp. 495–501.

    Google Scholar 

  9. 9. F. Clarke, Yu. Ledyaev, E. D. Sontag, and A. Subbotin, Asymptotic controllability implies feedback stabilization. IEEE Trans. Automat. Control 42 (1997), 1394–1407.

    Article  MATH  MathSciNet  Google Scholar 

  10. 10. J.-M. Coron, Global asymptotic stabilization for controllable systems without drift. Math. Control Signals Systems 5 (1992), 295–312.

    Article  MATH  MathSciNet  Google Scholar 

  11. 11. C. Kellett and A. Teel, Weak converse Lyapunov function theorems and control-Lyapunov functions. SIAM J. Control Optim. 42 (2004), 1934–1959.

    Article  MATH  MathSciNet  Google Scholar 

  12. 12. M. Malisoff, L. Rifford, and E. D. Sontag, Global asymptotic controllability implies input-to-state stabilization. SIAM J. Control Optim. 42 (2004), 2221–2238.

    Article  MATH  MathSciNet  Google Scholar 

  13. 13. M. Malisoff and E. D. Sontag, Asymptotic controllability and input-to-state stabilization: The effect of actuator errors. In: Optimal Control, Stabilization, and Nonsmooth Analysis (M. de Queiroz, M. Malisoff, and P. Wolenski, eds.), Lect. Notes Control Inform. Sci. Vol. 301, Springer-Verlag, New York (2004), pp. 155–171.

    Google Scholar 

  14. 14. J. Milnor, Differential topology. In: 1964 Lectures on Modern Mathematics, Vol. II, Wiley, New York (1964), pp. 165–183.

    Google Scholar 

  15. 15. L. Rifford, Existence of Lipschitz and semiconcave control-Lyapunov functions. SIAM J. Control Optim. 39 (2000), 1043–1064.

    Article  MATH  MathSciNet  Google Scholar 

  16. 16. _______, Semiconcave control-Lyapunov functions and stabilizing feedbacks. SIAM J. Control Optim. 41 (2002), 659–681.

    Article  MATH  MathSciNet  Google Scholar 

  17. 17. E. D. Sontag, A Lyapunov-like characterization of asymptotic controllability. SIAM J. Control Optim. 21 (1983), 462–471.

    Article  MATH  MathSciNet  Google Scholar 

  18. 18. _______, Smooth stabilization implies coprime factorization. IEEE Trans. Automat. Control 34 (1989), 435–443.

    Article  MATH  MathSciNet  Google Scholar 

  19. 19. _______, Mathematical control theory. Deterministic finite-dimensional systems. Texts Appl. Math. Vol. 6. Springer-Verlag, New York (1998).

    MATH  Google Scholar 

  20. 20. _______, Stability and stabilization: Discontinuities and the effect of disturbances. In: Nonlinear Analysis, Differential Equations, and Control (F. Clarke and R. Stern, eds.), Kluwer, Dordrecht (1999), pp. 551–598.

    Google Scholar 

  21. 21. _______, Clocks and insensitivity to small measurement errors. ESAIM Control Optim. Calc. Var. 4 (1999), 537–557.

    Article  MATH  MathSciNet  Google Scholar 

  22. 22. E. D. Sontag and H. J. Sussmann, Remarks on continuous feedback. In: Proc. IEEE Conf. on Decision and Control (Albequerque, NM, December 1980), pp. 916–921.

    Google Scholar 

  23. 23. _______, General classes of control-Lyapunov functions. In: Stability Theory (R. Jeltsch and M. Mansour, eds.), Int. Ser. Numerical Math. Vol. 121, Birkhäauser, Basel (1996), pp. 87–96.

    Google Scholar 

  24. 24. H. J. Sussmann, Subanalytic sets and feedback control. J. Differential Equations 31 (1979), 31–52.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Malisoff.

Additional information

2000 Mathematics Subject Classification. 93B05.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malisoff, M., Krichman, M. & Sontag, E. Global Stabilization for Systems Evolving on Manifolds. J Dyn Control Syst 12, 161–184 (2006). https://doi.org/10.1007/s10450-006-0379-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10450-006-0379-x

Key words and phrases.

Navigation