Log in

Prediction of Damage Factor in end Milling of Glass Fibre Reinforced Plastic Composites Using Artificial Neural Network

  • Published:
Applied Composite Materials Aims and scope Submit manuscript

Abstract

Glass fibre reinforced plastic (GFRP) composites are an economic alternative to engineering materials because of their superior properties. Some damages on the surface occur due to their complex cutting mechanics in cutting process. Minimisation of the damages is fairly important in terms of product quality. In this study, a GFRP composite material was milled to experimentally minimise the damages on the machined surfaces, using two, three and four flute end mills at different combinations of cutting parameters. Experimental results showed that the damage factor increased with increasing cutting speed and feed rate, on the other hand, it was found that the damage factor decreased with increasing depth of cut and number of the flutes. In addition, analysis of variance (ANOVA) results clearly revealed that the feed rate was the most influential parameter affecting the damage factor in end milling of GFRP composites. Also, in present study, Artificial Neural Network (ANN) models with five learning algorithms were used in predicting the damage factor to reduce number of expensive and time-consuming experiments. The highest performance was obtained by 4-10-1 network structure with LM learning algorithm. ANN was notably successful in predicting the damage factor due to higher R2 and lower RMSE and MEP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Gaitonde, V.N., Karnik, S.R., Campos Rubio, J., Esteves Correia, A., Abrão, A.M., Paulo Davim, J.: A study aimed at minimizing delamination during drilling of CFRP composites. J. Compos. Mater. 45, 2359–2368 (2011)

    Article  CAS  Google Scholar 

  2. Azmi, A.I., Lin, R.J.T., Bhattacharyya, D.: Machinability study of glass fibre-reinforced polymer composites during end milling. Int. J. Adv. Manuf. Technol. (2012). doi:10.1007/s00170-012-4006-6

  3. Davim, J.P., Reis, P., Antonio, C.C.: A study on milling of glass fiber reinforced plastics manufactured by hand-lay up using statistical analysis (ANOVA). Compos. Struct. 64, 493–500 (2004)

    Article  Google Scholar 

  4. Davim, J.P., Reis, P.: Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. J. Mater. Process. Technol. 160, 160–167 (2005)

    Article  CAS  Google Scholar 

  5. Rubio, J.C., Abroa, A.M., Correia, A.E., Davim, J.P.: Effect of high speed in the drilling of glass fiber reinforced plastic: Evaluation of the delamination factor. Int. J. Mach. Tools. Manuf. 48, 715–720 (2008)

    Article  Google Scholar 

  6. Capello, E.: Work piece dam** and its effect on delamination damage in drilling thin composite laminates. J. Mater. Process. Technol. 148, 186–195 (2004)

    Article  CAS  Google Scholar 

  7. Göloglu, C., Arslan, Y.: Zigzag machining surface roughness modelling using evolutionary approach. J. Intell. Manuf. 20, 203–210 (2009)

    Article  Google Scholar 

  8. Fernandez-Abia, A.I., Barreiro, J., Lopez de Lacalle, L.N., Martinez, S.: Effect of very high cutting speeds on shearing, cutting forces and roughness in dry turning of austenitic stainless steels. Int. J. Adv. Manuf. Technol. 57, 61–71 (2011)

    Article  Google Scholar 

  9. Senthil Kumar, K.L., Sivasubramanian, R.: Modeling of metal removal rate in machining of aluminum matrix composite using artificial neural network. J. Compos. Mater. 45, 2309–2316 (2011)

    Article  Google Scholar 

  10. Bhat, C., Bhat, M.R., Murthy, C.R.L.: Characterization of failure modes in CFRP composites-An ANN approach. J. Compos. Mater. 42(3), 257–276 (2008)

    Article  CAS  Google Scholar 

  11. De Albuquerque, V.H.C., Tavares, J.M.R.S., Durao, L.M.P.: Evaluation of delamination damage on composite plates using an artificial neural network for the radiographic image analysis. J. Compos. Mater. 44(9), 1139–1159 (2009)

    Article  Google Scholar 

  12. Karnik, S.R., Gaitonde, V.N., Campos Rubio, J., Esteves Correia, A., Abrão, A.M., Paulo Davim, J.: Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model. Mater. Des. 29, 1768–1776 (2008)

    Article  CAS  Google Scholar 

  13. Al-Haik, M.S., Hussaini, M.Y., Garmestani, H.: Prediction of nonlinear viscoelastic behavior of polymeric composites using an artificial neural network. Int. J. Plast. 22, 1367–1392 (2006)

    Article  CAS  Google Scholar 

  14. Fernández-Fdz, D., López-Puente, J., Zaera, R.: Prediction of the behaviour of CFRPs against high-velocity impact of solids employing an artificial neural network methodology. Compos. Part A 39, 989–996 (2008)

    Article  Google Scholar 

  15. Chen, X., **e, H., Chen, H., Zhang, F.: Optimization for CFRP pultrusion process based on genetic algorithm-neural network. Int. J. Mater. Form. 3(Suppl 2), 1391–1399 (2010)

    Article  Google Scholar 

  16. Chakraborty, D.: Artificial neural network based delamination prediction in laminated composites. Mater. Des. 26, 1–7 (2005)

    Article  CAS  Google Scholar 

  17. Altinkok, N., Koker, R.: Modelling of the prediction of tensile and density properties in particle reinforced metal matrix composites by using neural networks. Mater. Des. 27, 625–631 (2006)

    Article  CAS  Google Scholar 

  18. Yang, Y.K., Yang, R.T., Tzeng, C.J.: Optimization of mechanical characteristics of short glass fiber and polytetrafluoroethylene reinforced polycarbonate composites using the neural network approach. Expert Syst. Appl. 39, 3783–3792 (2012)

    Article  Google Scholar 

  19. LiuJie, X., Davim, J.P., Cardoso, R.: Prediction on tribological behaviour of composite PEEK-CF30 using artificial neural networks. J. Mater. Process. Technol. 189, 374–378 (2007)

    Article  Google Scholar 

  20. Naderpour, H., Kheyroddin, A., Ghodrati Amiri, G., Hoseini Vaez, S.R.: Estimating the behavior of FRP-strengthened RC structural members using artificial neural networks. Procedia Eng. 14, 3183–3190 (2011)

    Article  Google Scholar 

  21. El-Mounayri, H., Kishawy, H., Briceno, J.: Optimization of CNC ball end milling: a neural network-based model. J. Mater. Process. Technol. 166, 50–62 (2005)

    Article  CAS  Google Scholar 

  22. Aykut, S., Golcu, M., Semiz, S., Ergur, H.S.: Modeling of cutting forces as function of cutting parameters for face milling of satellite 6 using an artificial neural network. J. Mater. Process. Technol. 190, 199–203 (2007)

    Article  CAS  Google Scholar 

  23. Cay, Y., Cicek, A., Kara, F., Sagiroglu, S.: Prediction of engine performance for an alternative fuel using artificial neural network. Appl. Therm. Eng. 37, 217–225 (2012)

    Article  Google Scholar 

  24. Huang, B.P., Chen, J.C., Ye, L.: Artificial-neural-networks-based surface roughness Pokayoke system for end-milling operations. Neurocomputing 71, 544–549 (2008)

    Article  Google Scholar 

  25. Nasiri, M.R., Mahjoob, M.J., Aghakasiri, A.: Damage detection in a composite plate using modal analysis and artificial intelligence. Appl. Compos. Mater. 18, 513–520 (2011)

    Article  Google Scholar 

  26. Al-Assadi, M., El Kadi, H.A., Deiab, I.M.: Using artificial neural networks to predict the fatigue life of different composite materials including the stress ratio effect. Appl. Compos. Mater. 18, 297–309 (2011)

    Article  Google Scholar 

  27. Al-Assadi, M., El Kadi, H., Deiab, I.M.: Predicting the fatigue life of different composite materials using artificial neural networks. Appl. Compos. Mater. 17, 1–14 (2010)

    Article  Google Scholar 

  28. Sayin, C., Ertunc, H.M., Hosoz, M., Kilicaslan, I., Canakci, M.: Performance and exhaust emissions of a gasoline engine using artificial neural network. Appl. Therm. Eng. 27, 46–54 (2007)

    Article  CAS  Google Scholar 

  29. Turan, M.: The high velocity impact damage in layered composite materials. Eng. Mech. 48(575), 1–8 (2000)

    Google Scholar 

  30. Razfar, M.R., Zanjani Zadeh, M.R.: Optimum damage and surface roughness prediction in end milling glass fibre-reinforced plastics, using neural network and genetic algorithm. Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf. 223, 653–664 (2009)

    Article  Google Scholar 

  31. Liu, D.F., Tang, Y.J., Cong, W.L.: A review of mechanical drilling for composite laminates. Compos. Struct. 94, 1265–1279 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adem Çiçek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erkan, Ö., Işık, B., Çiçek, A. et al. Prediction of Damage Factor in end Milling of Glass Fibre Reinforced Plastic Composites Using Artificial Neural Network. Appl Compos Mater 20, 517–536 (2013). https://doi.org/10.1007/s10443-012-9286-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10443-012-9286-3

Keywords

Navigation