Log in

Existence of Solutions for the Debye-Hückel System with Low Regularity Initial Data

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper we study existence of solutions for the Cauchy problem of the Debye-Hückel system with low regularity initial data. By using the Chemin-Lerner time-space estimate for the heat equation, we prove that there exists a unique local solution if the initial data belongs to the Besov space \(\dot{B}^{s}_{p,q}(\mathbb{R}^{n})\) for \(-\frac{3}{2}<s\leq-2+\frac{n}{2}\), \(p=\frac{n}{s+2}\) and 1≤q≤∞, and furthermore, if the initial data is sufficiently small then the solution is global. This result improves the regularity index of the initial data space in previous results on this system. The blow-up criterion of solutions is also established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ben Abdallah, N., Méhats, F., Vauchelet, N.: A note on the long time behavior for the drift-diffusion-Poisson system. C. R. Math. Acad. Sci. Paris 339(10), 683–688 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Biler, P., Dolbeault, J.: Long time behavior of solutions to Nernst-Planck and Debye-Hückel drift-diffusion systems. Ann. Henri Poincaré 1, 461–472 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biler, P., Hebisch, W., Nadzieja, T.: The Debye system: existence and large time behavior of solutions. Nonlinear Anal. 23, 1189–1209 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chemin, J.-Y.: Perfect Incompressible Fluids. Oxford Lecture Series in Mathematics and Its Applications, vol. 14. The Clarendon Press/Oxford University Press, New York (1998)

    MATH  Google Scholar 

  5. Dachin, R.: Fourier analysis methods for PDE’s (2005). http://perso-math.univ-mlv.fr/users/danchin.raphael/courschine.pdf

  6. Debye, P., Hückel, E.: Zur Theorie der Elektrolyte. II. Das Grenzgesetz für die elektrische Leitfähigkeit. Phys. Z. 24, 305–325 (1923)

    Google Scholar 

  7. Gajewski, H.: On existence, uniqueness and asymptotic behavior of solutions of the basic equations for carrier transport in semiconductors. Z. Angew. Math. Mech. 65, 101–108 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gajewski, H., Gröger, K.: On the basic equations for carrier transport in semiconductors. J. Math. Anal. Appl. 113, 12–35 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Iwabuchi, T.: Global wellposedness for Keller-Segel system in Besov type spaces. J. Math. Anal. Appl. 379, 930–948 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Karch, G.: Scaling in nonlinear parabolic equations. J. Math. Anal. Appl. 234, 534–558 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kurokiba, M., Ogawa, T.: Well-posedness for the drift-diffusion system in L p arising from the semiconductor device simulation. J. Math. Anal. Appl. 342, 1052–1067 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lemarié-Rieusset, P.-G.: Recent Developments in the Navier-Stokes Problem. Research Notes in Mathematics. Chapman & Hall/CRC, London (2002)

    Book  MATH  Google Scholar 

  13. Mock, M.S.: An initial value problem from semiconductor device theory. SIAM J. Math. Anal. 5, 597–612 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ogawa, T., Shimizu, S.: The drift-diffusion system in two-dimensional critical hardy space. J. Funct. Anal. 255, 1107–1138 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ogawa, T., Shimizu, S.: End-point maximal regularity and wellposedness of the two dimensional Keller-Segel system in a critical Besov space. Math. Z. 264, 601–628 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Runst, T., Sickel, W.: Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations. de Gruyter Series in Nonlinear Analysis and Applications, vol. 3. de Gruyter, Berlin (1996)

    Book  MATH  Google Scholar 

  17. Selberherr, S.: Analysis and Simulation of Semiconductor Devices. Springer, Berlin (1983)

    Google Scholar 

  18. Wu, G., Yuan, J.: Well-posedness of the cauchy problem for the fractional power dissipative equation in critical Besov spaces. J. Math. Anal. Appl. 340, 1326–1335 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhao, J., Liu, Q., Cui, S.: Regularizing and decay rate estimates for solutions to the cauchy problem of the Debye-Hückel system. Nonlinear Differ. Equ. Appl. 19, 1–18 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge their sincere thanks to the anonymous referee for informing us some important references and valuable suggestions on improving the writing of this paper. This work is supported by the NSF of China (11171357) and the Doctor Fund of Northwest A&F University (Z109021118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jihong Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Liu, Q. & Cui, S. Existence of Solutions for the Debye-Hückel System with Low Regularity Initial Data. Acta Appl Math 125, 1–10 (2013). https://doi.org/10.1007/s10440-012-9777-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-012-9777-0

Keywords

Mathematics Subject Classification (2010)

Navigation