Log in

Euler-Poincaré Approaches to Nematodynamics

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

Nematodynamics is the orientation dynamics of flowless liquid-crystals. We show how Euler-Poincaré reduction produces a unifying framework for various theories, including Ericksen-Leslie, Luhiller-Rey, and Eringen’s micropolar theory. In particular, we show that these theories are all compatible with each other and some of them allow for more general configurations involving a non vanishing disclination density. All results are also extended to flowing liquid crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chandrasekhar, S.: Liquid Crystals. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  2. de Gennes, P.G.: Short range order effects in the isotropic phase of nematics and cholesterics. Mol. Cryst. Liq. Cryst. 12, 193–214 (1971)

    Article  Google Scholar 

  3. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford University Press, London (1988)

    Google Scholar 

  4. Dzyaloshinskii, I.E., Volovick, G.E.: Poisson brackets in condensed matter systems. Ann. Phys. 125, 67–97 (1980)

    Article  MathSciNet  Google Scholar 

  5. Ellis, D.C.P., Gay-Balmaz, F., Holm, D.D., Putkaradze, V., Ratiu, T.S.: Symmetry reduced dynamics of charged molecular strands. Arch. Ration. Mech. Anal. 197(3), 811–902 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eringen, A.C.: An assessment of director and micropolar theories of liquid crystals. Int. J. Eng. Sci. 31, 605–616 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eringen, A.C.: A unified continuum theory of liquid crystals. Ari 50(4), 73–84 (1997)

    Article  Google Scholar 

  8. Gay-Balmaz, F., Ratiu, T.S.: The geometric structure of complex fluids. Adv. Appl. Math. 42(2), 176–275 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gay-Balmaz, F., Tronci, C.: Reduction theory for symmetry breaking with applications to nematic systems. Physica D 239(20–22), 1929–1947 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gay-Balmaz, F., Tronci, C.: The helicity and vorticity of liquid-crystal flows. Proc. R. Soc. Lond. A 467, 1197–1213 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gay-Balmaz, F., Holm, D.D., Ratiu, T.S.: Variational principles for spin systems and the Kirchhoff rod. J. Geom. Mech. 1(4), 417–444 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gay-Balmaz, F., Ratiu, T.S., Tronci, C.: Equivalent theories of liquid crystal dynamics (2011). ar**v:1102.2918

  13. Holm, D.D.: Euler-Poincaré dynamics of perfect complex fluids. In: Holmes, P., Newton, P., Weinstein, A. (eds.) Geometry, Dynamics and Mechanics: 60th Birthday Volume for J.E. Marsden. Springer, Berlin (2002)

    Google Scholar 

  14. Holm, D.D., Kupershmidt, B.A.: The analogy between spin glasses and Yang-Mills fluids. J. Math. Phys. 29, 21–30 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  15. Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1–81 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kleman, M., Lavrentovich, O.D.: Soft Matter Physics—An Introduction. Springer, Berlin (2003)

    Google Scholar 

  17. Krishnaprasad, P.S., Marsden, J.E.: Hamiltonian structure and stability for rigid bodies with flexible attachments. Arch. Ration. Mech. Anal. 98, 71–93 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  18. Leslie, F.M.: Theory of flow phenomena in liquid crystals. In: Brown, G.H. (ed.) Advances in Liquid Crystals, vol. 4, p. 181. Academic Press, New York (1979)

    Google Scholar 

  19. Lhuillier, D., Rey, A.D.: Nematic liquid crystals and ordered micropolar fluids. J. Non-Newton. Fluid Mech. 120, 169–174 (2004)

    Article  MATH  Google Scholar 

  20. Marsden, J.E., Ratiu, T.S.: Introduction to Mechanics and Symmetry, 2nd edn. Springer, Berlin (2004)

    Google Scholar 

  21. Marsden, J.E., Misiołek, G., Ortega, J.-P., Perlmutter, M., Ratiu, T.S.: Hamiltonian Reduction by Stages. Lecture Notes in Math., vol. 1913. Springer, Berlin (2007)

    MATH  Google Scholar 

  22. Rey, A.D., Denn, M.M.: Dynamical phenomena in liquid-crystalline materials. Annu. Rev. Fluid Mech. 34, 233–266 (2002)

    Article  MathSciNet  Google Scholar 

  23. Volovik, G.E., Kats, E.I.: Nonlinear hydrodynamics of liquid crystals. Sov. Phys. JETP 54(1), 122–126 (1981)

    Google Scholar 

Download references

Acknowledgements

Stimulating conversations with David Chillingworth, Giovanni De Matteis, and Giuseppe Gaeta are greatly acknowledged. Also, the authors wish to warmly thank the referees for their valuable comments and keen remarks that helped improving this paper.

TSR was partially supported by Swiss NSF grant 200020-126630 and by the government grant of the Russian Federation for support of research projects implemented by leading scientists, Lomonosov Moscow State University under the agreement No. 11.G34.31.0054.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesare Tronci.

Appendix: The Free Energy

Appendix: The Free Energy

We reproduce here the computation in [12] that shows how all terms in the Frank energy

can be rewritten in terms of the variables j=J(Inn) and γ, the latter being introduced through the invariant relation ∇n=n×γ. Thus, the explicit expression for the micropolar free energy Ψ(j,γ) of nematic media given in (4.4) will be written after computing the micropolar expression for each term in the Frank energy. Further details are given in [12].

Twist

Using nn=Ij/J, we have

$$\mathbf{n}\cdot \nabla\times\mathbf{n}=-\mathbf{n}\cdot\boldsymbol{\gamma}( \mathbf{n})+\|\mathbf{n}\|^2\operatorname{Tr}(\boldsymbol{\gamma})= \frac{1}{J}\operatorname{Tr} ({j}{\boldsymbol {\gamma }})=\frac{1}{J} \operatorname{Tr} \bigl({j}{\boldsymbol {\gamma }}^S \bigr), $$

where γ(n)=γ ia n a , with a being the \(\mathfrak{so}(3)\simeq\Bbb{R}^{3}\)-index, and γ S denotes the skew part of γ, i.e., γ S=(γγ T)/2, where we see γ as a 3×3 matrix with components γ ia .

Splay

We introduce the vector \({\vec{{\boldsymbol {\gamma }}} }_{b}=\epsilon_{abc}{\boldsymbol {\gamma }}_{ac}\), defined by the condition \(\vec{\boldsymbol{\gamma }} \cdot\mathbf{u}=\operatorname{Tr}(\mathbf{u}\times\boldsymbol{\gamma})\), for all u∈ℝ3, where u×γ is the matrix with components (u×γ) ia =(u×γ i ) a . We compute

where γ A denotes the skew part of γ, i.e., γ A=(γγ T)/2 and where we used the equality \(\widehat{\vec{\boldsymbol{\gamma}}} =-2\boldsymbol{\gamma}^{A}\). The latter can be shown by noting that we have the equalities \(\operatorname{Tr}(\widehat{\vec{\boldsymbol{\gamma}}}\hat {\mathbf{u}})=-2\vec{\boldsymbol{\gamma}}\cdot\mathbf{u}=-2\operatorname{Tr}(\boldsymbol{\gamma}\widehat{\mathbf{u}})\) for all u∈ℝ3.

Bend

For all u∈ℝ3, we have

so we get

$$\mathbf{n} \times ( \nabla \times \mathbf{n} )=\vec{\boldsymbol{\gamma }}- \frac{1}{J}\overrightarrow{\boldsymbol{\gamma } {j} } $$

and therefore

$$\big\|\mathbf{n} \times ( \nabla \times \mathbf{n} )\big\|^2=\biggl \Vert \frac{1}{J}\overrightarrow{\boldsymbol{\gamma } {j}} -\vec{\boldsymbol{ \gamma }}\biggr \Vert ^2=-2\operatorname{Tr} \biggl( \biggl( \frac{1}{J}({\boldsymbol {\gamma }}j)^A-{\boldsymbol {\gamma }}^A \biggr)^{ 2} \biggr). $$

Summing all the terms, we obtain that the Frank free energy is indeed given by the expression for Ψ provided in (4.4).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gay-Balmaz, F., Ratiu, T.S. & Tronci, C. Euler-Poincaré Approaches to Nematodynamics. Acta Appl Math 120, 127–151 (2012). https://doi.org/10.1007/s10440-012-9719-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-012-9719-x

Keywords

Navigation