Log in

Bending waves of a rectangular piezoelectric laminated beam

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

A simple nonlinear model is proposed in this paper to study the bending wave in a rectangular piezoelectric laminated beam of infinite length. Based on the constitutive relations for transversely isotropic piezoelectric materials and isotropic elastic materials, combined with some electric conditions, we derive the bending wave equation in a long rectangular piezoelectric laminated beam by using energy method. The nonlinearity considered is geometrically associated with the nonlinear normal strain in the longitudinal beam direction. The shock-wave solution, solitary-wave solution and other exact solutions of the bending wave equation are obtained by the extended F-expansion method. And by using the reductive perturbation method we derive the nonlinear Schrodinger (NLS) equation, further more, the bright and dark solitons are obtained. For those soliton solutions, and some parameters derived by the process of solving soliton solutions, some conclusions are drawn by numerical analysis with some fixed conditions.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Gardner, C.S., Greene, J.M., Kruskal, M.D., et al.: Method for solving the Korteweg-deVries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  Google Scholar 

  2. Xu, L.P., Wang, S.L.: Envelope periodic solutions to nonlinear NLS equation. J.Shaanxi Inst. Technol. 20, 67–74 (2004). (in Chinese)

    Google Scholar 

  3. Wang, D.S., Zhang, H.Q.: Further improved F-expansion method and new exact solutions of Konopelchenko-Dubrovsky equation. Chaos Soliton. Fract. 25, 601–610 (2005)

    Article  MathSciNet  Google Scholar 

  4. Liu, Y.Q., Wen, X.Y., Wang, D.S.: The N-soliton solution and localized wave interaction solutions of the (2 + 1)-dimensional generalized Hirota-Satsuma-Ito equation. Comput. Math. Appl. 77, 947–966 (2019)

    Article  MathSciNet  Google Scholar 

  5. Wang, D.S., Guo, B.L., Wang, X.L.: Long-time asymptotics of the focusing Kundu–Eckhaus equation with nonzero boundary conditions. J. Diff. Eq. 266, 5209–5253 (2019)

    Article  MathSciNet  Google Scholar 

  6. Xu, L., Wang, D.S., Wen, X.Y., et al.: Exotic localized vector waves in a two-component nonlinear wave system. J. Nonlinear Sci. 30, 537–564 (2020)

    Article  MathSciNet  Google Scholar 

  7. Zhang, Z.D., Bi, Q.S.: Solitary waves for a nonlinear dispersive long wave equation. Acta Mech. Sin. 24, 455–462 (2008)

    Article  MathSciNet  Google Scholar 

  8. Dai, C.Q., Liu, J., Fan, Y., et al.: Two-dimensional localized Peregrine solution and breather excited in a variable-coefficient nonlinear Schrodinger equation with partial nonlocality. Nonlinear Dyn. 88, 1373–1383 (2017)

    Article  MathSciNet  Google Scholar 

  9. **ong, Z.J., Xu, Q., Ling, L.M.: Dark and multi-dark solitons in the three-component nonlinear Schrodinger equations on the general nonzero background. Chin. Phys. B 28, 120201 (2019)

    Article  Google Scholar 

  10. Castillo, P., Gomez, S.: Highly dispersive solitary wave solutions of perturbed nonlinear Schrodinger equations. Phys. Rev. Lett. 371, 124972 (2020)

    MathSciNet  Google Scholar 

  11. Zhang, H.Q., Li, J.C.: Analysis of current induced by long internal solitary waves in stratified ocean. Acta Mech. Sin. 26, 653–660 (2010)

    Article  MathSciNet  Google Scholar 

  12. Li, M.M., Hu, C.L., Wu, J., et al.: Soliton excitations and interaction in alpha helical protein with interspine coupling in modified nonlinear Schrodinger equation. Chin. Phys. B 28, 120502 (2019)

    Article  Google Scholar 

  13. Brazhnyi, V.A., Novoa, D., Jisha, C.P.: Dynamical generation of interwoven soliton trains by nonlinear emission in binary Bose-Einstein condensates. Phys. Rev. A 88, 6380–6387 (2013)

    Article  Google Scholar 

  14. Mamyshev, P.V., Chernikov, S.V., Dianov, E.M.: Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines. IEEE J. Quantum Elect. 27, 2347–2355 (1991)

    Article  Google Scholar 

  15. Dawson, S.P., Fontan, C.F.: An analysis of unidimensional soliton gas models of magnetohydrodynamic turbulence in the solar wind. Astrophys. J. 348, 761–777 (1989)

    Article  Google Scholar 

  16. Wu, J., Wheatley, J., Putterman, S., et al.: Observation of envelope solitons in solids. Phys. Rev. Lett. 59, 2744–2747 (1987)

    Article  Google Scholar 

  17. Mao, M., Rader, D.: Longitudinal stress pulse propagation in nonuniform elastic and viscoelastic bars. Int. J. Solids Struct. 6, 519–538 (1970)

    Article  Google Scholar 

  18. Engelbrecht, J., Berezovski, A., Salupere, A.: Nonlinear deformation waves in solids and dispersion. Wave Motion 44, 493–500 (2007)

    Article  MathSciNet  Google Scholar 

  19. Zhang, S.Y., Liu, Z.F.: Three kinds of nonlinear dispersive waves in elastic rods with finite deformation. Appl. Math. Mech-Eng. 29, 909–917 (2008)

    Article  MathSciNet  Google Scholar 

  20. Zhou, Y.Q., Zhang, S.Y.: The envelope soliton in a elastic cylindrical shell subjected to axial compression and its existent conditions. Acta Armamentarii 31, 922–926 (2010). (in Chinese)

    Google Scholar 

  21. Lukyanov, V.V.: Propagation of waves along a slightly bent piezoelectric rod. J. Math. Sci. 102, 4258–4264 (2000)

    Article  MathSciNet  Google Scholar 

  22. Chen, A.L., Li, F.M., Wang, Y.S.: Localization of flexural waves in a disordered periodic piezoelectric beam. J. Sound Vib. 304, 863–874 (2007)

    Article  Google Scholar 

  23. Zhang, C.L., Chen, Q.C.: Torsional wave propagation in a circumferentially poled piezoelectric cylindrical transducer with unattached electrodes. IEEE T. Ultrason. Ferr. 57, 1095–1097 (2010)

    Google Scholar 

  24. Li, W., Yang, X.D., Zhang, W., et al.: Free vibration analysis of a spinning piezoelectric beam with geometric nonlinearities. Acta Mech. Sin. 35, 1230–1236 (2019)

    MathSciNet  Google Scholar 

  25. Xue, C.X., Pan, E., Zhang, S.Y.: Solitary waves in a magneto-electro-elastic circular rod. Smart Mater. Struct. 20, 105010 (2011)

    Article  Google Scholar 

  26. Xue, C.X., Pan, E.: On the longitudinal wave along a functionally graded magneto-electro-elastic rod. Int. J. Eng. Sci. 62, 48–55 (2013)

    Article  Google Scholar 

  27. Zhang, Y.W., Chen, J., Zeng, W., et al.: Surface and thermal effects of the flexural wave propagation of piezoelectric functionally graded nanobeam using nonlocal elasticity. Comp. Mater. Sci. 97, 222–226 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. X. Xue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, C.P., Xue, C.X. Bending waves of a rectangular piezoelectric laminated beam. Acta Mech. Sin. 36, 1099–1108 (2020). https://doi.org/10.1007/s10409-020-00977-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-020-00977-w

Keywords

Navigation