Log in

Microbial and physical sedimentary structures in modern evaporitic coastal environments of Saudi Arabia and Egypt

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

Field and petrographic studies of recent supratidal sabkhas and ponds, and a solar salt works, in Saudi Arabia and Egypt have documented the formation of distinctive surface sedimentary structures that have resulted from microbial activity and abiological physical processes. Microbially induced sedimentary structures (MISS) dominate the permanent and ephemeral parts of supratidal ponds of Al Zeeb sabkha, Saudi Arabia and halite crystallization ponds in salt works, west of Alexandria, Egypt. They are varied and include gas bubbles, blisters, wrinkles, pinnacles, cones, and polygonal folds (petees) induced by epibenthic microbial mats. Physically induced sedimentary structures dominate the emergent areas surrounding the ponds, as well as the supratidal sabkhas in Al Zeeb and Ras Shukeir areas. They include polygonal cracks and different types of tepees. The sediments of the microbial-induced structures are composed of green and brown microbial filaments that entrap and bind lenticular and clastic gypsum, or form nucleation sites for halite and/or grass-like gypsum crystals. The sediments of the physically induced structures are composed of halite-cemented siliciclastic sand and mud, or bottom-nucleated chevron and cornet halite crystals. The results of this study indicate that microbial and physical structures co-exist due to local factors, especially topography, brine recharge, salinity, microbial activity, and history of the supratidal sabkha and pond. The importance of the local interplay of these conditions indicates that it will be difficult to interpret sedimentary successions in fossil sabkhas and their general depositional environment if only limited sections are available for study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adams JE, Frenzel HN (1950) Capitan barrier reef, Texas and New Mexico. J Geol 58:289–312

    Article  Google Scholar 

  • Alonso-Zarza AM, Sánchez-Moya Y, Bustillo MA, Sopeńa A, Delgado A (2002) Silicification and dolomitization of anhydrite nodules in argillaceous terrestrial deposits: an example of meteoric-dominated diagenesis from the Triassic of central Spain. Sediment 49:303–317

    Article  Google Scholar 

  • Alsharhan AS, Kendall CGStC (2003) Holocene coastal carbonates and evaporites of the southern Arabian Gulf and their ancient analogues. Earth Sci Rev 61(3–4):191–243

    Article  Google Scholar 

  • Aref MAM (1998) Holocene stromatolites and microbial laminites associated with lenticular gypsum in a marine-dominated environment, Ras El Shetan area, Gulf of Aqaba, Egypt. Sedimentol 45:245–266

    Article  Google Scholar 

  • Aref MAM, Bachmann GH (2006) Recent Gypsum Karst Features of Ras Shukeir Coastal Sabkha, Gulf of Suez, Egypt. In: 17th International Sedimentological Conference, ISC2006, Fukouka, Japan, (Abstract)

  • Aref MAM, Taj R (2012) Recent analog of gypsified microbial laminites and stromatolites in solar salt works and the Miocene gypsum deposits of Saudi Arabia and Egypt. Arab J Geosci. doi:10.1007/s12517-012-0684-5

    Google Scholar 

  • Assereto RIAM, Kendall CGSC (1977) Nature, origin, and classification of peritidal tepee structures and related breccias. Sediment 24:153–210

    Article  Google Scholar 

  • Attia O (2013) Sedimentological characteristics and geochemical evolution of Nabq sabkha, Gulf of Aqaba, Sinai, Egypt. Arab J Geosci 6:2045–2059

    Article  Google Scholar 

  • Bachmann GH, Aref MAM (2005) A seismite in Triassic gypsum deposits (Grabfeld Formation, Ladinian), southwestern Germany. Sediment Geol 180(1-2):75–89

    Article  Google Scholar 

  • Basyoni MH (2004) Sedimentology, mineralogy and brine chemistry of Rabigh Recent Sabkha. Red Sea coast, Saudi Arabia. Sedimentol Egypt 12:1–29

    Google Scholar 

  • Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, Przekop KM, Visscher PT (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment Geol 185:131–145

    Article  Google Scholar 

  • Bosak T, Liang B, Sim MS, Petroff AP (2009) Morphological record of oxygenic photosynthesis in conical stromatolites. Proc Natl Acad Sci USA 106:10939–10943

    Article  Google Scholar 

  • Bosak T, Bush JWM, Flynn MR, Liang B, Ono S, Petroff AP, Sim MS (2010) Formation and stability of oxygen-rich bubbles that shape photosynthetic mats. Geobiol 8:45–55

    Article  Google Scholar 

  • Bose S, Chafetz HS (2009) Topographic control on distribution of modern microbially induced sedimentary structures (MISS): a case study from Texas coast. Sediment Geol 213:136–149

    Article  Google Scholar 

  • Bouougri EH, Porada H (2002) Mat-related sedimentary structures in Neoproterozoic peritidal passive margin deposits of the West African Craton (Anti-Atlas, Morocco). Sediment Geol 153:85–106

    Article  Google Scholar 

  • Cornée A, Dickman M, Busson G (1992) Laminated cyanobacterial mats in sediments of solar salt works; some sedimentological implications. Sedimentol 39:599–612

    Article  Google Scholar 

  • Cuadrado DG, Carmona NB, Bournod CA (2011) Biostabilization of sediments by microbial mats in a temperate siliciclastic tidal flat, Bahía Blanca estuary (Argentina). Sediment Geol 237:95–101

    Article  Google Scholar 

  • Cuadrado DG, Carmona NB, Bournod CN (2012) Mineral precipitation on modern siliciclastic tidal flats colonized by microbial mats. Sediment Geol 271–272:58–66

    Google Scholar 

  • Davis JS (2009) Management of biological systems for continuously operated solar saltworks. Global Nest J 11(1):73–78

    Google Scholar 

  • Eren M (2007) Genesis of tepees in the Quaternary hardpan calcretes, Mersin, S Turkey. Carbon Evaporites 22(2):123–134

    Article  Google Scholar 

  • Eriksson PG, Scheiber J, Bouougri E, Gerdes G, Porada H, Banerjee S, Bose PK, Sarkar S (2007) Classification of structures left by microbial mats in their host sediments. In: Schieber J, Bose PJ, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneanu O (eds) Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record: Atlases in Geoscience 2. Elsevier, Amsterdam, pp 39–52

    Google Scholar 

  • Gammon PRT, McKirdy DM, Smith HD (2005) The timing and environment of tepee formation in a Marinoan cap carbonate. Sediment Geol 177:195–208

    Article  Google Scholar 

  • Gavish E, Krumbein WE, Halevy J (1985) Geomorphology, mineralogy and groundwater geochemistry as factors of the hydrodynamic system of the Gavish Sabkha: In: Friedman GM, Krumbein WE (eds) Hypersaline ecosystems; the Gavish Sabkha 53. City Univ, Brooklyn Coll., NY, pp 186–217

  • Gehling JG (1999) Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios 14:40–57

    Article  Google Scholar 

  • Gerdes G (2007) Structures left by modern microbial mats in their host sediments. In: Schieber J, Bose PJ, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneanu O (eds) Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record: Atlases in Geoscience 2. Elsevier, Amsterdam, pp 5–38

    Google Scholar 

  • Gerdes G, Krumbein WE (1987) Biolaminated deposits. In: Bhattacharji S, Friedman GM, Neugcbauer HJ, Seilacher A (eds) Lecture notes in earth sciences, 9. Springer, Berlin Heidelberg New York, pp 1–183

    Google Scholar 

  • Gerdes G, Krumbein WE, Noffke N (2000) Evaporite microbial sediments. In: Riding R, Awramik S (eds) Microbial sediments. Springer, Berlin Heidelberg New York, pp 592–607

    Google Scholar 

  • Gerdes G, Krumbein WE, Reineck HE (1985) The depositional record of sandy versicolored tidal flats (Mellum Island, southern North Sea). J Sediment Petrol 55:265–278

    Google Scholar 

  • Gerdes G, Claes M, Piewak KD, Riege H, Krumbein WE, Reineck HE (1993) Contribution of microbial mats to sedimentary surface structures. Facies 29:61–74

    Article  Google Scholar 

  • Goodall TM, North CP, Glennie KW (2000) Surface and subsurface sedimentary structures produced by salt crusts. Sedimentol 47:99–118

    Article  Google Scholar 

  • Huerta-Diaz MA, Delgadillo-Hinojosa F, Siqueiros-Valencia A, Valdivieso-Ojeda J, Reimer JJ, Segovia-Zavala JA (2012) Millimeter-scale resolution of trace metal distributions in microbial mats from a hypersaline environment in Baja California, Mexico. Geobio 10:531–547

    Article  Google Scholar 

  • Javor BJ (1985) Nutrients and ecology of the Western salt and Exploration de Sal Saltern brines. In: Schreiber BC, Harner HL (eds) 6th International Symposium on Salt. The Salt Institute, Alexandria, vol 1, pp 195–205

  • Kendall CGSC, Skipwith PA (1969) Geomorphology of a Recent shallow-water carbonate province: khor Al Bazam, Trucial Coast, Southwest Persian Gulf. Geol Soc Am Bull 80:865–891

    Article  Google Scholar 

  • Kendall CGSC, Warren JK (1987) A review of the origin and setting of tepees and their associated fabrics. Sedimentol 34:1007–1027

    Article  Google Scholar 

  • Lokier SW (2012) Development and evolution of subaerial halite crust morphologies in a coastal sabkha setting. J Arid Env 79:32–47

    Article  Google Scholar 

  • Lokier SW, Steuber T (2009) Large-scale intertidal polygonal features of the Abu Dhabi Coastline. Sediment 56:609–621

    Article  Google Scholar 

  • Noffke N (2010) Geobiology: microbial mats in sandy deposits from the Archean Era to today. Springer, Berlin Heidelberg New York, p 194

    Book  Google Scholar 

  • Noffke N, Gerdes G, Klenke T, Krumbein WE (1997) A microscopic sedimentary succession of graded sand and microbial mats in modern siliciclastic tidal flats. Sediment Geol 110:1–6

    Article  Google Scholar 

  • Noffke N, Gerdes G, Klenke T, Krumbein WE (2001a) Microbially induced sedimentary structures indicating climatological, hydrological and depositional conditions within Recent and Pleistocene coastal facies zones (southern Tunisia). Facies 44:23–30

    Article  Google Scholar 

  • Noffke N, Gerdes G, Klenke T, Krumbein WE (2001b) Microbially induced sedimentary structures - a new category within the classification of primary sedimentary structures. J Sediment Res 71:649–656

    Article  Google Scholar 

  • Noffke N, Knoll A, Grotzinger J (2002) Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: a case study from the Upper Neoproterozoic Nama Group, Namibia. Palaios 17:533–544

    Article  Google Scholar 

  • Noffke N, Beukes N, Bower D, Hazen RM, Swift DJP (2008) An actualistic perspective into Archean worlds-(cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Ga Pongola Supergroup, South Africa. Geobiol 6:5–20

    Article  Google Scholar 

  • Orszag-Sperber F, Plaziat J-C, Baltzer F, Purser BH (2001) Gypsum salina-coral reef relationships during the last interglacial (marine isotopic stage 5e) on the Egyptian Red Sea coast-a Quaternary analogue for Neogene marginal evaporites? Sediment Geol 140:61–85

    Article  Google Scholar 

  • Ortí F, Rosell L, Playà E, Salvany JM (2012) Meganodular anhydritization: a new mechanism of gypsum to anhydrite conversion (Palaeogene-Neogene, Ebro Basin, North-east Spain). Sediment 59:1257–1277

    Article  Google Scholar 

  • Pflueger F (1999) Matground structures and redox facies. Palaios 14:25–39

    Article  Google Scholar 

  • Porada H, Bouougri EH (2007) Wrinkle structures–a critical review. Earth Sci Rev 81:199–215

    Article  Google Scholar 

  • Reineck HE, Gerdes G, Claes M, Dunajtschik K, Riege H, Krumbein WE (1990) Microbial modification of sedimentary surface structures. In: Heling D, Rothe P, Forstner U, Stoffers P (eds) Sediments and environmental geochemistry. Springer, Berlin Heidelberg New York, pp 254–276

    Chapter  Google Scholar 

  • Schieber J, Bose PK, Eriksson PG, Sarkar S (2007) Palaeogeography of microbial mats in terrigenous clastics-environmental distribution of associated sedimentary features and the role of geologic time. In: Schieber J, Bose PJ, Eriksson PG, Banerjee S, Sarkar S, Altermann W, Catuneanu O (eds) Atlas of Microbial Mat Features Preserved within the Siliciclastic Rock Record: Atlases in Geoscience 2. Elsevier, Amsterdam, pp 267–275

    Google Scholar 

  • Shinn EA (1969) Submarine lithification of Holocene carbonate sediments in the Persian Gulf. Sedimentol 12:109–144

    Article  Google Scholar 

  • Skyring GW, Lynch RM, Smith GD (1989) Quantitative relationships between carbon, hydrogen and sulfur metabolism in cyanobacterial mats. In: Cohen Y, Rosenberg E (eds) Microbial mats, physiological ecology of benthic microbial communities. Am Soc Microbiol, Washington, DC, pp 170–179

    Google Scholar 

  • Taher AG, Abdel-Motelib A (2013) Microbial stabilization of sediments in a recent Salina, Lake Aghormi, Siwa Oasis, Egypt. Facies. doi:10.1007/s10347-013-0363-3

    Google Scholar 

  • Talbot CJ, Stanley W, Soub R, Al-Sadoun N (1996) Epitaxial salt reefs and mushrooms in the southern Dead Sea. Sedimentol 43:1025–1047

    Article  Google Scholar 

  • Thomas JC, Geisler D (1982) Peuplements benthiques a cyanophycees des marais salants de Salin-de-Giraud (Sud de la France). Geol Medit 9:391–412

    Google Scholar 

  • Vopel K, Hawes I (2006) Photosynthetic performance of benthic microbial mats in Lake Hoare, Antarctica. Limnol Oceanogr 51:1801–1812

    Article  Google Scholar 

  • Warren JK (1982) The hydrological significance of Holocene tepees, stromatolites, and boxwork limestones in coastal salinas in South Australia. J Sediment Petrol 52:1171–1201

    Google Scholar 

  • Warren JK (2006) Evaporites: Sediments, Resources and Hydrocarbons. Springer, Berlin Heidelberg New York, p 1035

    Book  Google Scholar 

Download references

Acknowledgments

MHB and MA thank the Deanship for Scientific Research, King Abdulaziz University for the fund to research project 1/145/1432 to Al Zeeb sabkha. GHB thanks Cairo University, Faculty of Science, Giza, for support during several stays as a guest scientist of the Geology Department. MA and GHB gratefully acknowledge the logistic support of General Petroleum Company (GPC) in the Ras Gharib area. We also thank Dr. Robert Weems, USGS, Reston/VA, for improving the English text. Helpful and constructive comments from the reviewers Nora Noffke and Tomaso Bontognali and the Editor-in-chief Maurice Tucker greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerhard H. Bachmann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aref, M.A.M., Basyoni, M.H. & Bachmann, G.H. Microbial and physical sedimentary structures in modern evaporitic coastal environments of Saudi Arabia and Egypt. Facies 60, 371–388 (2014). https://doi.org/10.1007/s10347-013-0379-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-013-0379-8

Keywords

Navigation