Log in

Petrography and biosedimentology of the Rosso Ammonitico Veronese (middle-upper Jurassic, north-eastern Italy)

  • Original Paper
  • Published:
Facies Aims and scope Submit manuscript

A petrographic and biosedimentological study of the Rosso Ammonitico Veronese from the Trento Plateau (north-eastern Italy) shows that diagenetic (neomorphism, recrystallization) and biological processes (microbial content and pigmentation) influenced the formation and alteration of the carbonate matrix. The subject of this article is the interaction of early diagenetic processes and an attempt to explain the different colors of the matrix (red, pink, grey). Nearly 200 samples derived from 14 sections (Callovian to Tithonian) located in the Verona area have been studied by means of classical, cathodoluminescence and SEM microscopy. Calcite and ferruginous microfilaments of different shapes and sizes are present and tentatively attributed to fungi and iron bacteria. These micro-organisms precipitated iron oxy-hydroxides at poorly dysoxic-anoxic sediment–water interfaces. Further liberation of submicronic hydroxides (now hematite) was responsible for the red pigmentation of the carbonate matrices, originally composed of less than 1 μm-sized micrite. Controversial smaller nanograins (0.1–0.5 μm) attributed to nanobacteria or planktonic picoeukaryotes have been observed in the reddish samples. Recrystallization of the micrite leads to the formation of new micritic crystals, between 2 and 4 μm in size, then to microspar crystals. Micritic textures are linked to the different colours of the samples. The intensity of the red colour is correlated with the presence of hematite (former iron hydroxides) and the presence of planar subhedral micritic grains. In contrast, pink and greyish samples are linked to the increasingly coalescent structure of anhedral micritic and microsparitic crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aller RC (1990) Bioturbation and manganese cycling in hemipelagic sediments. Phil Trans R Soc London A331:51–58

    Article  Google Scholar 

  • Bosellini A, Martinucci M (1975) Annegamento delle plattaforme carbonatiche. Ann Univ Ferrara IX 5 10:181–193

    Google Scholar 

  • Bosellini A, Winterer EL (1975) Pelagic limestones and radiolarites of the Tethyan Mesozoic: A genetic model. Geology 3:279–282

    Article  Google Scholar 

  • Boulvain F (1993) Sédimentologie et diagenèse des monticules micritiques ‘F2j’ du Frasnien de l’Ardenne. Serv Géol Belgique Prof Paper 260, pp 427

  • Boulvain F, De Ridder Ch, Gillan D, Mamet B, Préat A (2001) Iron microbial communities in Belgian Frasnian carbonate mounds. Facies 44:47–60

    Article  Google Scholar 

  • Brierley CL (1990) Metal immobilization using bacteria. In: Ehrlich HL, Brierley CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 303–324

    Google Scholar 

  • Bromley RG (1990) Trace fossils. Biology and taphonomy. Unwin Hyman, London, pp 280

    Google Scholar 

  • Bromley RG, Ekdale AA (1984) Chondrites: a trace fossil indicator of anoxia in sediments. Science 224:872–874

    Article  Google Scholar 

  • Caracuel JE, Olóriz F, Sarti C (1997) Environmental evolution during the Late Jurassic at Lavarone (Trento Plateau, Italy). Palaeogeogr Palaeoclimatol Palaeoecol 135:163–177

    Article  Google Scholar 

  • Catullo TA (1853) Intorno a una nuova classificazione delle calcarie rosse ammonitiche delle Alpi Venete. Mem Real Istit Veneto Let Arti 5:1–57

    Google Scholar 

  • Clari P, Martire L (1996) Interplay of cementation, mechanical compaction, and chemical compaction in nodular limestones of the Rosso Ammonitico Veronese (Middle-Upper Jurassic, Northeastern Italy). J Sediment Res 66:447–458

    Google Scholar 

  • Clari P, Marini P, Pastorini M, Pavia G (1984) Il Rosso Ammonitico inferiore (Baiociano-Calloviano) nei Monti Lessini settentrionali (Verona). Riv Ital Paleont Stratigr Milano 90:15–86

    Google Scholar 

  • Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, and uses. Wiley-VCH Weinhein, Germany, p 664

    Google Scholar 

  • Courties C, Vaquer A, Troussellier M, Chretiennot-Dinet MJ, Neveux J, Machado MC, Claustre H (1994) Smallest eukaryotic organism. Nature 370:255

    Article  Google Scholar 

  • Croal LR, Johnson CM, Beard BL, Newman DK (2004) Iron isotope fractionation by Fe(II) oxidizing photoautrophic bacteria. Geochim Cosmochim Acta 68:1227–1242

    Article  Google Scholar 

  • De Ridder C, Jangoux M, De Vos L (1985) Description and significance of a peculiar intradigestive symbiosis between bacteria and a deposit-feeding echinoid. J Exp Mar Biol Ecol 96:65–75

    Article  Google Scholar 

  • De Zigno A (1850) Coup d’oeil sur les terrains stratifiés des Alpes Vénétiennes. Naturw Abh 4:1–16 Wien

    Google Scholar 

  • Fenchel T, Finlay J (1995) Ecology and Evolution in Anoxic Worlds. Oxford Series in Ecology and Evolution, Oxford University Press, Oxford, UK, pp 276

  • Folk RL (1999) Nanobacteria and the precipitation of carbonate in unusual environments. Sediment Geol 126:47–55

    Article  Google Scholar 

  • Gaetani M (1975) Jurassic stratigraphy of the Southern Alps: a review. In: Squires C (ed) Geology of Italy: Lybian Arab Republic. Earth Science Society, Tripoli, pp 377–402

    Google Scholar 

  • Ghiorse WC (1984) Biology of iron and manganese-depositing bacteria. Ann Rev Microbiol 38:515–550

    Google Scholar 

  • Gillan D, De Ridder C (1997) Morphology of ferric iron-encrusted biofilm forming on the shelf of a burrowing bivavle (Mollusca). Aquat Microb Ecol 12:1–10

    Article  Google Scholar 

  • Hendry JP (1993) Calcite cementation during bacterial manganese, iron and sulphate reduction in Jurassic shallow marine carbonates. Sedimentology 40:87–106

    Article  Google Scholar 

  • Jenkyns HC, Clayton CJ (1986) Black shales and carbon isotopes in pelagic sediments from the Tethyan Lower Jurassic. Sedimentology 33:87–106

    Article  Google Scholar 

  • Libes SM (1992) An introduction to marine biogeochemistry, Wiley, New York, pp 734

  • Lockair RE, Savrda CE (1998) Ichnofossil tiering analysis of a rhythmically bedded chalk-marl sequence in the Upper Cretaceous of Alabama. Lethaia 31:311–322

    Article  Google Scholar 

  • Loreau JP (1972) Pétrographie de calcaires fins au microscope électronique à balayage: introduction à une classification des «micrites». CR Acad Sci Paris 274:810–813

    Google Scholar 

  • Machel HG (1999) Application of cathodoluminescence to carbonate diagnesis. In: Pagel M, Barbin, V, Blanc P, Ohnensletter D (eds) Cathodoluminescence in Geosciences. Springer-Verlag, Berlin, pp 271–301

  • Mamet B, Préat A (2003) Sur l’origine bactérienne et fongique de la pigmentation de l’Ammonitico Rosso (Jurassique, région de Vérone, Italie du nord). Rev Micropal 46:35–46

    Article  Google Scholar 

  • Mamet B, Préat A (2005a) Why is ‘red marble’ red? Rev Espan Micropal 37:13–21

    Google Scholar 

  • Mamet B, Préat A (2005b) Iron-bacterial mediation in phanerozoic red limestones. State of the Art. Sed Geol (in press).

  • Martire L (1988) Età, dinamica deposizionale e possibile organizzazione sequenziale del Rosso Ammonitico dell’Altopiano di Asiago (VI). Rendiconti Soc Geol Ital 11:231–236

    Google Scholar 

  • Martire L (1989) Analisi biostratigrafica e sedimentologica del Rosso Ammonitico Veronese dell’Altopiano di Asiago (VI). Ph.D. Thesis, University of Torino, p 166

  • Martire L (1992) Sequence stratigraphy and condensed pelagic sediments. An example from the Rosso Ammonitico Veronese, northeastern Italy. Palaeogeogr Palaeoclimatol Palaeoecol 94:169–191

    Article  Google Scholar 

  • Martire L (1996) Stratigraphy, facies and synsedimentary tectonics in the Jurassic Rosso Ammonitico Veronese (Altopiano di Asiago, NE Italy). Facies 35:209–236

    Article  Google Scholar 

  • Martire L, Clari PA, Pavia G (1991) Il significato stratigrafico della sezione di Cima Campo di Luserna (Giurassico delle Alpi Meridionale, Italia nord orientale). Palaeopelagos 1:56–65

    Google Scholar 

  • Megonigal JP, Hines ME, Visscher PT (2003) Anaerobic metabolism: linkages to trace gases and aerobic processes. In: Schlesinger W, Holland HD, Turekian B (eds) Treatise on geochemistry, biogeochemistry. Elsevier, Amsterdam 8:317–424

  • Munn CB (2004) Marine microbiology. Ecology and application. Garland Science/Bios Scientific, Oxford, UK, pp 282

  • Munnecke A, Westphal H, Reijmer JJG, Samtleben C (1997) Microspar development during early marine burial diagenesis: a comparison of Pliocene carbonates from the Bahamas with Silurian limestones from Gotland (Sweden). Sedimentology 44:977–990

    Google Scholar 

  • Ott JA, Rieger G, Rieger R, Enderes F (1982) New mouthless interstitial worms from the sulfide system: symbiosis with prokaryotes. PSZNI Mar Ecol 38:313–333

    Article  Google Scholar 

  • Powell E (1989) Oxygen sulfide and diffusion: why thiobiotic meiofauna must be sulfide-insensitive first-order respires. J Mar Res 47:887–932

    Google Scholar 

  • Préat A, Cauet S, Herbosch A (1983) Caractère épigénétique-étranger des gîtes filoniens Pb-Zn (Ba-F) du district du bord sud du Synclinorium de Dinant (Belgique). Mineral Depos 18:349–363

    Article  Google Scholar 

  • Préat A, Mamet B, Bernard A, Gillan D (1999) Bacterial mediation red matrices diagenesis, Devonian, Montagne Noire (Southern France). Sediment Geol 126:223–243

    Article  Google Scholar 

  • Sarti C (1985) Biostratigraphie et faune à ammonites du Jurassique supérieur de la plate-forme atésine (Formation du Rosso Ammonitico Véronais). Rev Paléobiol 4:321–330

    Google Scholar 

  • Sarti C (1986) Fauna e biostratigrafia del Rosso Ammonitico del Trentino centrale (Kimmeridgiano-Titoniano). Boll Soc Paleontol Ital 23:473–514

    Google Scholar 

  • Sarti C (1993) Il Kimmeridgiano delle Prealpi Veneto-Trentine: Fauna e Biostratigrafia. Mem Mus Civ Stor Nat Verona (II Ser) Sez Sc Terra 5:145

    Google Scholar 

  • Schulz HD (2000) Quantification of early diagenesis; dissolved constituents in marine pore water. In: Schulz HD, Zabel M (eds) Marine Geochemistry. Springer-Verlag, Berlin, pp 85–128

  • Scudeler Baccelle L, Nardi S (1991) Interaction between calcium carbonate and organic matter: An example from the Rosso Ammonitico Veronese (Veneto, north Italy). Chem Geol 93:301–311

    Article  Google Scholar 

  • Sethmann I, Neuweiler F, Geipel G (2001) Comparative fluorescence characteristics of the Calcari grigi Formation and the Rosso Ammonitico Veronese (Jurassic, Trento Platform, Northern Italy): significance for palaeobathymetry and petrogenesis. 21st IAS-Meeting of Sedimentology 3–5 September 2001 Davos Switzerland

  • Stolp H (1988) Microbial ecology: organisms, habitats, activities. Cambridge sudies in ecology. Cambridge University Press, Cambridge, UK, p 308

  • Sturani C (1964) La Successione delle Faune ad Ammoniti nelle Formazioni mediogiurassiche delle Prealpi venete Occidentale. Mem Inst di Geol i Mineral Univ di Padova 24:1–63

  • Sturani C (1971) Ammonites and stratigraphy of the Posidonia alpina beds in the Venetian Alps (Middle Jurassic, mainly Bajocian). Mem Inst Geol Min Univ Padova 28:1–190

    Google Scholar 

  • Tobin KJ, Walker K (1996) Ordovician low-to-intermediate Mg calcite marine cements from Sweden: marine alteration and implications for oxygen isotopes in Ordovician seawater. Sedimentology 43:719–735

    Article  Google Scholar 

  • Van den Hoek C, Mann DG, Jahns HM (1995) Algae, an introduction to phycology. Cambridge University Press, Cambridge, UK, pp 623

    Google Scholar 

  • Wachter E, Hayes JM (1985) Exchange of oxygen isotopes in carbon-dioxide-phosphoric acid systems. Chem Geol 52:365–374

    Google Scholar 

  • Winterer EL, Bosellini A (1981) Subsidence and sedimentation on a Jurassic passive continental margin, Southern Alps, Italy. AAPG Bull 65:394–422

    Google Scholar 

  • Winterer EL, Metzler CV, Sarti M (1991) Neptunian dykes and associated breccias (Southern Alps, Italy and Switzerland): role of gravity sliding in open and closed systems. Sedimentology 38:381–404

    Article  Google Scholar 

  • Zempolich WG (1993) The drowning succession in Jurassic carbonates of the Venetian Alps, Italy: a record of supercontinent breakup, gradual eustatic rise, and eutrophization of shallow-water environments. AAPG Mem 57:63–105

    Google Scholar 

Download references

Acknowledgments

This research was supported by a postdoctoral fellowship granted to S. Morano from the “Conseil Régional de la Région Bourgogne”. The investigations were also supported by the Belgian Fonds National de la Recherche Scientifique (Project FRFC no 2.4509.03) and by the French CNRS (UMR 5561, Biogeosciences). We are grateful to Dr L. Lambert, N. Guichard and Dr R. Romano for experimental help, and to Ms V Mautone for the moral support. We thank the reviewers L. Martire (U. of Turino) and F. Oloritz (U. of Granada) for their constructive remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Préat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Préat, A., Morano, S., Loreau, JP. et al. Petrography and biosedimentology of the Rosso Ammonitico Veronese (middle-upper Jurassic, north-eastern Italy). Facies 52, 265–278 (2006). https://doi.org/10.1007/s10347-005-0032-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10347-005-0032-2

Keywords

Navigation