Log in

Physically based shallow translational landslide susceptibility analysis in Tibo catchment, NW of Portugal

  • Original Paper
  • Published:
Landslides Aims and scope Submit manuscript

Abstract

The Northwest of Portugal is a steep slope mountain area where high amounts of rainfall (3,000 mm/year) occur especially on winter, promoting high natural propensity to slope failure, mainly shallow landslides. This article aims to assess shallow landslide susceptibility, in Tibo catchment, Serra da Peneda, North of Portugal, using two physically based models—SHAllow Landslide STABility (SHALSTAB) and Safety Factor (SF)—applying a set of mechanical and hydrological parameters, assessed in situ and laboratory testing of soil samples collected in the field, calibrated by back analysis of landslides inventoried in the study area, as well as accurate topographic information derived from a high-resolution digital elevation model (DEM). The validation of results was made using shallow landslide scars, directly inventoried in the field. Both susceptibility model results were validated by scar concentration (SC) and landslide potential (LP). SHALSTAB model was also validated by minimum log q/T. SHALSTAB predicts 50 % of the area to be on unstable classes (log q/T < −2.5), 77 % of the SC on unstable classes and a LP index of 7 and 4.7 % for the two most unstable classes. By minimum log q/T, SHALSTAB predicts 91 % of the scars to occur on unstable classes. Safety factor predicts 47.99 % of the area as unstable, 79.9 % of the SC for unstable classes, and a LP index on unstable classes of 4.63 and 2.77 % on partially unstable class. For the most unstable classes of both models, the greatest values of LP were between 3.5 and 7 %. The simple physically based models used in this study (SHALSTAB and SF) proved to be effective as shallow landslide susceptibility predictors, being in consequence useful tools for municipal planning on landslide hazards, but their application requires, beyond detailed topographical information, good estimates of the mechanical and hydrological soil properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aleotti P, Chowdhury R (1999) Landslides hazard assessment: summary review and new perspectives. Bull Eng Geol Env 58:21–44

    Article  Google Scholar 

  • Alexander D (1992) On the causes of landslides: human activities, perception and natural processes. Environ Geol Water Sci 20(3):165–179

    Article  Google Scholar 

  • Ayala IA (2004) Hazard assessment of rainfall-induced landsliding in Mexico. Geomorphology 61:19–40

    Article  Google Scholar 

  • Bateira C (2001) Movimentos de Vertente no NW de Portugal, Susceptibilidade Geomorfológica e Sistemas de Informação Geográfica. Tese de Doutoramento. Faculdade de Letras da Universidade do Porto

  • Bateira C (2010) Avaliação da susceptibilidade natural na região norte de Portugal. Análise prospectiva e ordenamento do território. Prospectiva e Planeamento 17:15–32

    Google Scholar 

  • Baum RL, Savage W, Godt J (2002) TRIGRS—transient rainfall infiltration grid-based regional slope stability analysis. vol File Report 02–0424, U.S. Geological Survey

  • Baum RL, Savage W, Godt J (2008) TRIGRS—a Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, Version 2.0, U.S. Geological Survey

  • Beven KJ, Kirkby MJ (1979) A physically based variable contributing area model of basin hydrology. Hydrol Sci Bull 24:43–69

    Article  Google Scholar 

  • Calcaterra D, de Riso R, Di Martire D (2004) Assessing shallow debris slide hazard in the Agnano Plain (Naples, Italy) using SINMAP, a physically based slope stability model. In: Symposium on landslides, Rio de Janeiro. Taylor & Francis Group, pp 177–183

  • Carrara AL (1993) Uncertainty in evaluating landslide hazard and risk. Predictions and perception of natural hazards. Kluwer, Dordrecht

    Google Scholar 

  • Carrara A, Cardinali M, Detti R, Guzzetti F, Pasqui V, Reichenbach P (1991) GIS techniques and statistical models in evaluating landslide hazard. Earth Surf Process Landf 16:427–445

    Article  Google Scholar 

  • Cervi F, Berti M, Borgatti L, Ronchetti F, Manenti F, Corsini A (2010) Comparing predictive capability of statistical and deterministic methods for landslide susceptibility map**: a case study in the northern Apennines (Reggio Emilia Province, Italy). Landslides 7:433–444. doi:10.1007/s10346-010-0207-y

    Article  Google Scholar 

  • Crozier MJ, Glade T (2004) Landslide hazard and risk: issues, concepts and approach. In: Glade TA M, Crozier MJ (eds) Landslide hazard and risk. Wiley, Chichester, p 802

    Google Scholar 

  • Daveau S (1977) Répartition et rythme des précipitations au Portugal. Memórias do CEG

  • Dietrich W, Montgomery D (1998) SHALSTAB: a digital terrain model for map** shallow landslide potential. National Council of the Paper Industry for Air and Stream Improvement (NCASI) Technical Report: 26 p

  • Dietrich W, Asua R, Orr J, Trso M (1998) A validation study of the shallow slope stability model, SHALSTAB, in forested lands of Northern California. Watershed and Riverine Sciences Stillwater Ecosystem, Berkeley, 59 p

    Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874

    Article  Google Scholar 

  • Fernandes N, Guimarães RF, Gomes R, Vieira B, Montgomery D, Greenberg H (2001) Condicionantes geomorfológicos dos deslizamentos nas encostas: teoria, evidências de campo e aplicação de modelo de previsão de áreas susceptíveis. Rev Bras Geomorfologia 2(1):51–71

    Google Scholar 

  • Fernandes N, Guimarães RF, Gomes R, Vieira B, Montgomery D, Greenberg H (2004) Topographic controls of landslides in Rio de Janeiro: field evidence and modeling. Catena 55:163–181

    Article  Google Scholar 

  • Geotechdata (2011) Angle of friction. http://geotechdata.info/parameter/angle-of-friction. Accessed 24 May 2012

  • Gomes R (2006) Modelagem de previsão de movimentos de massa a partir da combinação de modelos de escorregamentos e corridas de massa. Tese de Doutoramento. Universidade Federal do Rio de Janeiro

  • Guimarães RF, Montgomery D, Greenberg H, Fernandes N, Gomes R, Carvalho Júnior OA (2003) Parameterization of soil properties for a model of topographic controls on shallow landsliding: application to Rio de Janeiro. Eng Geol 69:99–108

    Article  Google Scholar 

  • Guzzetti F (2005) Landslide hazard and risk assessment. PhD thesis. Universidade de Bona

  • Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216

    Article  Google Scholar 

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897–1910

    Article  Google Scholar 

  • Listo F, Vieira B (2012) Map** of risk and susceptibility of shallow-landslide in the City of São Paulo, Brazil. Geomorphology 169–170:30–44. doi:10.1016/j.geomorph.2012.01.010

    Article  Google Scholar 

  • Marques F (1997) As Arribas do Litoral do Algarve. Dinâmica, Processos e Mecanismos. Tese de Doutoramento. Departamento de Geologia da Faculdade de Ciências da Universidade de Lisboa

  • Montgomery DR, Dietrich W (1994) A physically based model for the topographic control on shallow landsliding. Water Resour Res 30(4):1153–1171

    Article  Google Scholar 

  • Montgomery DR, Sullivan K, Greenberg H (1998) Regional test of a model for shallow landsliding. Hydrol Process 12:943–955

  • Moreira A, Simões M (1988) Noticia Explicativa da folha 1-D Arcos de Valdevez. Direcção GeraI de Geologia e Minas. Serviços Geológicos de Portugal, Lisboa

    Google Scholar 

  • O’Loughlin EM (1986) Prediction of surface saturation zones in natural catchments by topographic analysis. Water Resour Res 22(5):794–804

    Article  Google Scholar 

  • Pack R, Tarbotan D, Goodwin C (1998) SINMAP—a stability index approach to terrain stability hazard map**. User’s manual. http://hydrology.neng.usu.edu/sinmap/. 68 p

  • Pack R, Tarbotan D, Goodwin C (2005) SINMAP 2—a stability index approach to terrain stability hazard map**. http://hydrology.neng.usu.edu/sinmap/. User’s manual. Terratech Consulting Ltd. (Salmon Arm, B.C., Canada):73 p

  • Pereira S (2009) Perigosidade a Movimentos de Vertente na Região Norte de Portugal. Tese de Doutoramento. Universidade do Porto

  • Pereira S, Zêzere J, Bateira C (2012) Technical note: assessing predictive capacity and conditional independence of landslide predisposing factors for shallow landslide susceptibility models. Nat Hazards Earth Syst Sci 12:979–988. doi:10.5194/nhess-12-979-2012

    Article  Google Scholar 

  • Raia S, Alvioli M, Rossi M, Baum RL, Godt J, Guzzetti F (2014) Improving predictive power of physically based rainfall-induced shallow landslide models: a probabilistic approach. Geosci Model Dev. doi:10.5194/gmd-7-495-2014, 25 pp

    Google Scholar 

  • Ramos VM, Guimarães RF, Redivo AL, Gomes RAT, Fernandes NF, Carvalho Filho OA (2002) Aplicação do Modelo Shalstab, em Ambiente Arcview, para o Mapeamento de Áreas Susceptíveis a Escorregamento Raso na Região do Quadrilátero Ferrífero (Mg). Revista Espaço Geografia 5(1):49–67

    Google Scholar 

  • Reneau SL, Dietrich WE (1987) Size and location of colluvial landslides in a steep forested landscape. Erosion and sedimentation in the Pacific Rim. IAHS 165:39–47

    Google Scholar 

  • Salciarini D, Godt JW, Savage WZ, Conversini P, Baum RL, Michael JA (2006) Modeling regional initiation of rainfall-induced shallow landslides in the eastern Umbria Regional of Central Italy. Landslides 3:181–194

    Article  Google Scholar 

  • Santini M, Grimaldi S, Nardi F, Petroselli A, Rulli MC (2009) Pre-processing algorithms and landslide modelling on remotely sensed DEM’s. Geomorphology 113:110–125. doi:10.1016/j.geomorph.2009.03.023

    Article  Google Scholar 

  • Savage WZ, Godt JW, Baum RL (2004) Modeling time-dependent areal slope stability. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayão ASF (eds) Landslides: evaluation and stabilization. Taylor & Francis Group, Rio de Janeiro

    Google Scholar 

  • SGP (1988) Carta Geológica de Arcos de Valdevez, na escala 1/50 000. Lisboa

  • Sharma S (2002) Slope stability concepts. In: Abramson LW, Lee TS, Sharma S, Boyce GM (eds) Slope stability and stabilization methods. Wiley, New York, pp 329–461

    Google Scholar 

  • Soeters R, Westen V (1996) Slope instability recognition, analysis and zonation. In: Turner K, Schuster R (eds) Landslides investigation and mitigation. National Academy Press, Washington

    Google Scholar 

  • Süzen ML, Doyuran V (2004) A comparison of GIS based landslide susceptibility assessment methods: multivariate versus bivariate. Environ Geol 45:665–679

    Article  Google Scholar 

  • Teixeira M (2006) Movimentos de Vertente: Factores de Ocorrência e Metodologia de Inventariação. Geonovas (20):12 p

  • Vieira B, Fernandes N, Filho OA (2010) Shallow landslide prediction in the Serra do Mar, São Paulo, Brazil. Nat Hazards Earth Syst Sci 10:1829–1837. doi:10.5194/nhess−10-1829-2010

    Article  Google Scholar 

  • Wu W, Sidle R (1997) Application of a distributed Shallow Landslide Analysis Model (dSLAM) to managed forested catchments in Oregon, USA. In: Proceedings of Rabat Symposium S6, April. Human Impact on Erosion and Sedimentation, Rabat. IAHS Publ., pp 213–221

  • Yin K, Yan T (1988) Statistical prediction model for slope instability of metamorphosed rocks. In: Bonnard C (ed) Proc. Fifth International Symposium in Landslides, Lausanne, vol 2. Balkema, Rotterdam, pp 1269–1272

    Google Scholar 

  • Zêzere J (1997) Movimentos de Vertente e Perigosidade Geomorfológica na Região a Norte de Lisboa. Tese de Doutoramento. Universidade de Lisboa

Download references

Acknowledgments

The authors want to thank the two anonymous reviewers whose comments significantly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Teixeira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teixeira, M., Bateira, C., Marques, F. et al. Physically based shallow translational landslide susceptibility analysis in Tibo catchment, NW of Portugal. Landslides 12, 455–468 (2015). https://doi.org/10.1007/s10346-014-0494-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10346-014-0494-9

Keywords

Navigation