Log in

Separation of Aliphatic and Aromatic Carboxylic Acids by Conventional and Ultra High-Performance Ion-Exclusion Chromatography

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

An ion-exclusion chromatography (IELC) comparison between a conventional ion-exchange column and an ultra high-performance liquid chromatography (UHPLC) dynamically surfactant modified C18 column for the separation of an aliphatic carboxylic acid and two aromatic carboxylic acids is presented. Professional software is used to optimize the conventional IELC separation conditions for acetylsalicylic acid and the hydrolysis products: salicylic acid and acetic acid. Four different variables are simultaneously optimized including H2SO4 concentration, pH, flow rate, and sample injection volume. Thirty different runs are suggested by the software. The resolutions and the time of each run are calculated and feed back to the software to predict the optimum conditions. Derringer’s desirability functions are used to evaluate the test conditions and those with the highest desirability value are utilized to separate acetylsalicylic acid, salicylic acid, and acetic acid. These conditions include using a 0.35 mM H2SO4 (pH 3.93) eluent at a flow rate of 1 mL min−1 and an injection volume of 72 μL. To decrease the run time and improve the performance, a UHPLC C18 column is used after dynamic modification with sodium dodecyl sulfate. Using pure water as a mobile phase, a shorter analysis time and better resolution are achieved. In addition, the elution order is different from the IELC method which indicates the contribution of the reversed-phase mode to the separation mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wheaton RM, Bauman WC (1953) Ann N Y Acad Sci 57:159–176

    Article  CAS  Google Scholar 

  2. Ohta K, Towata A, Ohashi M (2003) J Chromatogr A 997:95–106

    Article  CAS  Google Scholar 

  3. Fritz JS, Gjerde DT (2009) Ion chromatography. WILEY-VCH Verlag GmbH & Co. KGA, Weinheim

    Book  Google Scholar 

  4. Ohta K, Tanaka K, Haddad PR (1997) J Chromatogr A 782:33–40

    Article  Google Scholar 

  5. Mansour FR, Kirkpatrick CL, Danielson ND (2013) J Chromatogr Sci. doi:10.1093/chromsci/bmt007

    Google Scholar 

  6. Ohta K, Tanaka K (1999) J Chromatogr A 850:177–185

    Article  CAS  Google Scholar 

  7. Ohta K, Ohashi M, ** JY, Takeuchi T, Fujimoto C, Choi SH, Ryoo JJ, Lee KP (2003) J Chromatogr A 997:117–125

    Article  CAS  Google Scholar 

  8. Zapała W, Kaczmarski K (2010) Acta Chromatographica 22:1–25

    Article  Google Scholar 

  9. Tanaka K, Ding MY, Takahashi H, Helaleh MIH, Taoda H, Hu W, Hasebe K, Haddad PR, Mori M, Fritz JS, Sarzanini C (2002) Anal Chim Acta 474:31–35

    Article  CAS  Google Scholar 

  10. Tanaka K, Ding MY, Helaleh MIH, Taoda H, Takahashi H, Hu W, Hasebe K, Haddad PR, Fritz JS, Sarzanini C (2002) J Chromatogr A 956:209–214

    Article  CAS  Google Scholar 

  11. Helaleh MIH, Tanaka K, Mori M, Xu Q, Taoda H, Ding MY, Hu W, Hasebe K, Haddad PR (2003) J Chromatogr A 997:133–138

    Article  CAS  Google Scholar 

  12. Helaleh MIH, Tanaka K, Mori M, Xu Q, Taoda H, Ding MY (2003) J Chromatogr A 997:139–144

    Article  CAS  Google Scholar 

  13. Mori M, Itabashi H, Helaleh MIH, Kaczmarski K, Głod B, Kowalska T (2006) J Chromatogr A 1118:41–45

    Article  CAS  Google Scholar 

  14. Zapała W, Kostka J, Kaczmarski K (2011) Acta Chromatographica 2:377–388

    Article  Google Scholar 

  15. Mori M, Helaleh MIH, Xu Q, Hu W, Ikedo M, Ding MY, Taoda H, Tanaka K (2004) J Chromatogr A 1039:129–133

    Article  CAS  Google Scholar 

  16. Widiastuti R, Haddad PR, Jackson PE (1992) J Chromatogr 602:43–50

    Article  CAS  Google Scholar 

  17. Glod BK, Haddad PR, Alexander PW (1992) J Chromatogr 595:149–154

    Article  CAS  Google Scholar 

  18. Watson JR, Crescuolo P, Matsui F (1971) J Pharm Sci 60:454–458

    Article  CAS  Google Scholar 

  19. Hobl EL, Jilma B, Ebner J, Schmid RW (2013) Biomed Chromatogr. doi:10.1002/bmc.2846

    Google Scholar 

  20. Mullangi R, Sharma K, Srinivas NR (2012) Biomed Chromatogr 26:906–941

    CAS  Google Scholar 

  21. Bharathi DV, Hotha KK, Kolagatla PRR, Venkateswarlu V (2013) Biomed Chromatogr. doi:10.1002/bmc.2832

    Google Scholar 

  22. Shaw LH, Tsai TH (2012) J Chromatogr B 895:31–38

    Article  Google Scholar 

  23. Wudarska E, Chrzescijanska E, Kusmierek E, Rynkowski J (2013) Electrochim Acta 93:189–194

    Article  CAS  Google Scholar 

  24. Hansen SH, Jensen ME, Bjørnsdottir I (1998) J Pharm Biomed Anal 17:1155–1160

    Article  CAS  Google Scholar 

  25. Šlais K (1989) J Chromatogr 469:223–229

    Article  Google Scholar 

  26. Lee JH, Hyung S-W, Mun D-G, Jung H-J, Kim H, Lee H, Kim S-J, Park KS, Moore RJ, Smith RD, Lee S-W (2012) J Proteome Res 11:4373–4381

    Article  CAS  Google Scholar 

  27. Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments. Wiley, Hoboken

    Google Scholar 

  28. Lucie N, Hana V, Solich P (2012) Talanta 93:99–105

    Article  Google Scholar 

  29. Hu W, Hasebe K, Reynolds DM, Haraguchi H (1997) Anal Chim Acta 353:143–149

    Article  CAS  Google Scholar 

  30. Berky R, Fekete S, Fekete J (2012) Chromatographia 75:305–312

    Article  CAS  Google Scholar 

  31. Fekete S, Berky R, Fekete J, Veuthey J-L, Guillarme D (2012) J Chromatogr A 1252:90–103

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Funding for the UHPLC instrument was made possible primarily by NIH AREA and ARRA grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil D. Danielson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mansour, F.R., Kirkpatrick, C.L. & Danielson, N.D. Separation of Aliphatic and Aromatic Carboxylic Acids by Conventional and Ultra High-Performance Ion-Exclusion Chromatography. Chromatographia 76, 603–609 (2013). https://doi.org/10.1007/s10337-013-2461-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-013-2461-3

Keywords

Navigation