Log in

Multi-parametric (ADC/PWI/T2-w) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

Glioblastoma multiforme (GBM) brain tumor is heterogeneous in nature, so its quantification depends on how to accurately segment different parts of the tumor, i.e. viable tumor, edema and necrosis. This procedure becomes more effective when metabolic and functional information, provided by physiological magnetic resonance (MR) imaging modalities, like diffusion-weighted-imaging (DWI) and perfusion-weighted-imaging (PWI), is incorporated with the anatomical magnetic resonance imaging (MRI). In this preliminary tumor quantification work, the idea is to characterize different regions of GBM tumors in an MRI-based semi-automatic multi-parametric approach to achieve more accurate characterization of pathogenic regions.

Materials and methods

For this purpose, three MR sequences, namely T2-weighted imaging (anatomical MR imaging), PWI and DWI of thirteen GBM patients, were acquired. To enhance the delineation of the boundaries of each pathogenic region (peri-tumoral edema, viable tumor and necrosis), the spatial fuzzy C-means algorithm is combined with the region growing method.

Results

The results show that exploiting the multi-parametric approach along with the proposed semi-automatic segmentation method can differentiate various tumorous regions with over 80 % sensitivity, specificity and dice score.

Conclusion

The proposed MRI-based multi-parametric segmentation approach has the potential to accurately segment tumorous regions, leading to an efficient design of the pre-surgical treatment planning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wrensch M, Minn Y, Chew T, Bondy M, Berger MS (2002) Epidemiology of primary brain tumors: current concepts and review of the literature. J Neurooncol 4(4):278–299

    Google Scholar 

  2. Pope WB, Sayre J, Perlina A, Villablanca JP, Mischel PS, Cloughesy TF (2005) MR imaging correlates of survival in patients with high-grade gliomas. Am J Neuroradiol 26(10):2466–2474

    PubMed  Google Scholar 

  3. Hammoud MA, Sawaya R, Shi W, Thall PF, Leeds NE (1996) Prognostic significance of preoperative MRI scans in glioblastoma multiforme. J Neurooncol 27(1):65–73

    Article  CAS  PubMed  Google Scholar 

  4. Lacroix M, Abi-Said D, Fourney DR, Gokaslan ZL, Shi W, DeMonte F, Lang FF, McCutcheon IE, Hassenbusch SJ, Holland E (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198

    Article  CAS  PubMed  Google Scholar 

  5. Gutman DA, Cooper LA, Hwang SN, Holder CA, Gao J, Aurora TD, Dunn WD, Scarpace L, Mikkelsen T, Jain R (2013) MR imaging predictors of molecular profile and survival: multi-institutional study of the TCGA glioblastoma data set. J Radiol 267(2):560–569

    Article  Google Scholar 

  6. Pope WB, Young JR, Ellingson BM (2011) Advances in MRI assessment of gliomas and response to anti-VEGF therapy. Curr Neurol Neurosci Rep 11(3):336–344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Jensen TR, Schmainda KM (2009) Computer-aided detection of brain tumor invasion using multiparametric MRI. J Magn Reson Imaging 30(3):481–489

    Article  PubMed  Google Scholar 

  8. Moritani T, Ekholm S, Westesson PL (2009) Diffusion-weighted MR imaging of the brain. Springer, Heidelberg

    Book  Google Scholar 

  9. Cha S (2006) Update on brain tumor imaging: from anatomy to physiology. Am J Neuroradiol 27(3):475–487

    CAS  PubMed  Google Scholar 

  10. Tofts P (2005) Quantitative MRI of the brain: measuring changes caused by disease. Wiley, London

    Google Scholar 

  11. Padhani AR, Miles KA (2010) Multiparametric imaging of tumor response to therapy. J Radiol 256(2):348–364

    Article  Google Scholar 

  12. Rollin N, Guyotat J, Streichenberger N, Honnorat J, Minh VAT, Cotton F (2006) Clinical relevance of diffusion and perfusion magnetic resonance imaging in assessing intra-axial brain tumors. J Neuroradiol 48(3):150–159

    Article  CAS  Google Scholar 

  13. Bauer S, Wiest R, Nolte L-P, Reyes M (2013) A survey of MRI-based medical image analysis for brain tumor studies. J Phys Med Biol 58(13):R97

    Article  Google Scholar 

  14. Wang Y, Lin ZX, Cao JG, Li MQ (2011) Automatic MRI brain tumor segmentation system based on localizing active contour models. Adv Mat Res 219:1342–1346

    Google Scholar 

  15. Sachdeva J, Kumar V, Gupta I, Khandelwal N, Ahuja CK (2012) A novel content-based active contour model for brain tumor segmentation. J Magn Reson Imaging 30(5):694–715

    Article  Google Scholar 

  16. Ho S, Bullitt E, Gerig G (2002) Level-set evolution with region competition: automatic 3-D segmentation of brain tumors. In: Pattern Recognition, 2002. Proceedings. 16th International Conference on 2002. IEEE, pp 532–535

  17. Kvinnsland Y, Brekke N, Taxt TM, Grüner R (2009) Multispectral analysis of multimodal images. Acta Oncol 48(2):277–284

    Article  PubMed  Google Scholar 

  18. Emblem KE, Nedregaard B, Hald JK, Nome T, Due-Tonnessen P, Bjornerud A (2009) Automatic glioma characterization from dynamic susceptibility contrast imaging: brain tumor segmentation using knowledge-based fuzzy clustering. J Magn Reson Imaging 30(1):1–10

    Article  PubMed  Google Scholar 

  19. Dou W, Ruan S, Chen Y, Bloyet D, Constans J-M (2007) A framework of fuzzy information fusion for the segmentation of brain tumor tissues on MR images. Image Vis Comput 25(2):164–171

    Article  Google Scholar 

  20. Clark MC, Hall LO, Goldgof DB, Velthuizen R, Murtagh FR, Silbiger MS (1998) Automatic tumor segmentation using knowledge-based techniques. IEEE Trans Med Imaging 17(2):187–201

    Article  CAS  PubMed  Google Scholar 

  21. Fletcher-Heath LM, Hall LO, Goldgof DB, Murtagh FR (2001) Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med 21(1):43–63

    Article  CAS  PubMed  Google Scholar 

  22. Zacharaki EI, Wang S, Chawla S, Soo Yoo D, Wolf R, Melhem ER, Davatzikos C (2009) Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme. Magn Reson Med 62(6):1609–1618

    Article  PubMed Central  PubMed  Google Scholar 

  23. Zikic D, Glocker B, Konukoglu E, Criminisi A, Demiralp C, Shotton J, Thomas O, Das T, Jena R, Price S (2012) Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. In: Med Image Comput Comput Assist Interv–MICCAI 2012. Springer, pp 369–376

  24. Gordillo N, Montseny E, Sobrevilla P (2013) State of the art survey on MRI brain tumor segmentation. J Magn Reson Imaging 31(8):1426–1438

    Article  Google Scholar 

  25. Angelini ED, Clatz O, Mandonnet E, Konukoglu E, Capelle L, Duffau H (2007) Glioma dynamics and computational models: a review of segmentation, registration, and in silico growth algorithms and their clinical applications. Curr Med Imaging Rev 3(4):262–276

    Article  Google Scholar 

  26. Ashburner J, Friston K (1997) Multimodal image coregistration and partitioning—a unified framework. Neuroimage 6(3):209–217

    Article  CAS  PubMed  Google Scholar 

  27. Østergaard L (2005) Principles of cerebral perfusion imaging by bolus tracking. J Magn Reson Imaging 22(6):710–717

    Article  PubMed  Google Scholar 

  28. Bjørnerud A, Emblem KE (2010) A fully automated method for quantitative cerebral hemodynamic analysis using DSC–MRI. J Cereb Blood Flow Metab 30(5):1066–1078

    Article  PubMed Central  PubMed  Google Scholar 

  29. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16(2):187–198

    Article  CAS  PubMed  Google Scholar 

  30. Li BN, Chui CK, Chang S, Ong S (2011) Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput Biol Med 41(1):1–10

    Article  PubMed  Google Scholar 

  31. Hsieh T, Liu Y-M, Liao C-C, **ao F, Chiang I-J, Wong J-M (2011) Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing. BMC Med Inform Decis Mak 11(1):54

    Article  PubMed Central  PubMed  Google Scholar 

  32. Zou KH, Warfield SK, Bharatha A, Tempany C, Kaus MR, Haker SJ, Wells WM III, Jolesz FA, Kikinis R (2004) Statistical validation of image segmentation quality based on a spatial overlap index: scientific reports. Acad Radiol 11(2):178–189

    Article  PubMed Central  PubMed  Google Scholar 

  33. McKnight TR, Noworolski SM, Vigneron DB, Nat ND, Sarah J (2001) An automated technique for the quantitative assessment of 3D-MRSI data from patients with glioma. J Magn Reson Imaging 13(2):167–177

    Article  CAS  PubMed  Google Scholar 

  34. Verma R, Zacharaki EI, Ou Y, Cai H, Chawla S, Lee SK, Melhem ER, Wolf R, Davatzikos C (2008) Multi-parametric tissue characterization of brain neoplasms and their recurrence using pattern classification of MR images. Acad Radiol 15(8):966

    Article  PubMed Central  PubMed  Google Scholar 

  35. Zöllner FG, Emblem KE, Schad LR (2012) SVM-based glioma grading: optimization by feature reduction analysis. Z Med Phys 22(3):205–214

    Article  PubMed  Google Scholar 

  36. Weizman L, Ben Sira L, Joskowicz L, Constantini S, Precel R, Shofty B, Ben Bashat D (2012) Automatic segmentation, internal classification, and follow-up of optic pathway gliomas in MRI. Med Image Anal 16(1):177–188

    Article  CAS  PubMed  Google Scholar 

  37. Gooya A, Pohl K, Bilello M, Cirillo L, Biros G, Melhem E, Davatzikos C (2011) GLISTR: glioma image segmentation and registration. IEEE Trans Med Imaging 31(10):1941–1954

    Article  Google Scholar 

  38. http://martinos.org/qtim/miccai2013/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Saligheh Rad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fathi Kazerooni, A., Mohseni, M., Rezaei, S. et al. Multi-parametric (ADC/PWI/T2-w) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. Magn Reson Mater Phy 28, 13–22 (2015). https://doi.org/10.1007/s10334-014-0442-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-014-0442-7

Keywords

Navigation