Log in

Energy and environmental applications of carbon nanotubes

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Energy and environment are major global issues inducing environmental pollution problems. Energy generation from conventional fossil fuels has been identified as the main culprit of environmental quality degradation and environmental pollution. In order to address these issues, nanotechnology plays an essential role in revolutionizing the device applications for energy conversion and storage, environmental monitoring, as well as green engineering of environmental friendly materials. Carbon nanotubes and their hybrid nanocomposites have received immense research attention for their potential applications in various fields due to their unique structural, electronic and mechanical properties. Here, we review the applications of carbon nanotubes (1) in energy conversion and storage such as in solar cells, fuel cells, hydrogen storage, lithium ion batteries and electrochemical supercapacitors, (2) in environmental monitoring and wastewater treatment for the detection and removal of gas pollutants, pathogens, dyes, heavy metals and pesticides and (3) in green nanocomposite design. Integration of carbon nanotubes in solar and fuel cells has increased the energy conversion efficiency of these energy conversion applications, which serve as the future sustainable energy sources. Carbon nanotubes doped with metal hydrides show high hydrogen storage capacity of around 6 wt% as a potential hydrogen storage medium. Carbon nanotubes nanocomposites have exhibited high energy capacity in lithium ion batteries and high specific capacitance in electrochemical supercapacitors, in addition to excellent cycle stability. High sensitivity and selectivity towards the detection of environmental pollutants are demonstrated by carbon nanotubes based sensors, as well as the anticipated potentials of carbon nanotubes as adsorbent to remove environmental pollutants, which show high adsorption capacity and good regeneration capability. Carbon nanotubes are employed as reinforcement material in green nanocomposites, which is advantageous in supplying the desired properties, in addition to the biodegradability. This article presents an overview of the advantages imparted by carbon nanotubes in electrochemical devices of energy applications and green nanocomposites, as well as nanosensor and adsorbent for environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Download references

Acknowledgments

The financial supports from Fundamental Research Grant Scheme (FRGS), USM Short Term Grant, Kuok Foundation Postgraduate Scholarship and USM Fellowship are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Huat Tan.

Additional information

This manuscript is an abridged version of our chapter published in the book Environmental Chemistry for a Sustainable World, volume 1: Nanotechnology and Health Risk (Tan et al. 2012).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, C.W., Tan, K.H., Ong, Y.T. et al. Energy and environmental applications of carbon nanotubes. Environ Chem Lett 10, 265–273 (2012). https://doi.org/10.1007/s10311-012-0356-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-012-0356-4

Keywords

Navigation