Log in

Decomposition of greenhouse gases by plasma

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

The topic of decomposition and reduction of greenhouse gases is becoming an important issue in tackling the global warming effect since several years ago. Several technologies, including plasma-utilized process, were proposed to improve the treatment ability for the destruction of green house gases usually emitted by industrial activities. In this review paper, the application of plasma to reduce the emission of greenhouse gases was briefly summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • US Environmental Protection Agency (2002) Greenhouse gases and global warming potential values, Washington, DC, EPA 430-R–02–003.

  • Alberici RM, Jardim WF (1997) Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide. Appl Catal B: Environ 14:55–68

    Article  CAS  Google Scholar 

  • Bonizzoni G, Vassallo E (2002) Plasma physics and technology; industrial applications. Vacuum 64:327–336

    Article  CAS  Google Scholar 

  • Buser RG, Sullovan JJ (1970) Initial process in CO2 glow discharges. J Appl Phys 41(2):472–479

    Article  CAS  Google Scholar 

  • Choudhary TV, Aksoylu E, Goodman DW (2003) Nonoxidative activation of methane. Catal Rev 45:151–203

    Article  CAS  Google Scholar 

  • Coltrin ME, Dandy DS (1993) Analysis of diamond growth in subatmospheric dc plasma-gun reactors. J Appl Phys 74(9):5803–5820

    Article  CAS  Google Scholar 

  • Dalaine V, Cormier JM, Lefaucheux PA (1998) A gliding discharge applied to H2S destruction. J Appl Phys 83(5):2435–2441

    Article  CAS  Google Scholar 

  • Diamy A-M, Hrach R, Hrachova V, Legrand J-C (2001) Influence of C atom concentration for acetylene production in CH4/N2 afterglow. Vacuum 61:403–407

    Article  CAS  Google Scholar 

  • Fabry F, Flamant G, Fulcheri L (2001) Carbon black processing by thermal plasma analysis of the particle formation mechanism. Chem Eng Sci 56:2123–2132

    Article  CAS  Google Scholar 

  • Fridman A, Nester S, Kennedy LA, Saveliev A, Yardimci OM (1999) Gliding arc gas discharge. Prog Energy Combust Sci 25:211

    Article  CAS  Google Scholar 

  • Frosch RA (1995) The industrial ecology of the 21st century. Sci Am 283:180–183

    Google Scholar 

  • Hijikata K, Ogawa K, Miyakawa N (1999) Methanol conversion from methane and water vapor by electric discharge (effect of electric discharge process on methane conversion). Heat Trans Asia Res 28(5):404–417

    Google Scholar 

  • Hwang B-B, Yeo Y-K, Na B-K (2003) Conversion of CH4 and CO2 to syngas and higher hydrocarbons using dielectric barrier discharge. Korean J Chem Eng 20(4):631–634

    Article  CAS  Google Scholar 

  • Indarto A (2007) Kinetic of CO2 reduction by gliding arc plasma. Asia J Water Environ Pollut 4(1):191–194

    CAS  Google Scholar 

  • Indarto A, Choi JW, Lee H, Song HK (2005a) Gliding arc processing for decomposition of chloroform. Toxicol Environ Chem 87(1–4):509–519

    Google Scholar 

  • Indarto A, Choi JW, Lee H, Song HK (2005b) Kinetic modeling of plasma methane conversion using gliding arc plasma. J Nat Gas Chem 14:13–21

    CAS  Google Scholar 

  • Indarto A, Choi JW, Lee H, Song HK (2006a) Decomposition of CCl4 and CHCl3 on gliding arc plasma. J Environ Sci 14(1):81–88

    Google Scholar 

  • Indarto A, Choi JW, Lee H, Song HK (2006b) Treatment of CCl4 and CHCl3 emission in a gliding-arc plasma. Plasma Device Oper 14(1):1–14

    Article  CAS  Google Scholar 

  • Indarto A, Choi JW, Lee H, Song HK (2006c) Discharge characteristics of a gliding-arc plasma in chlorinated methanes diluted in atmospheric air. Plasma Device Oper 14(1):15–26

    Article  CAS  Google Scholar 

  • Indarto A, Choi JW, Lee H, Song HK (2006d) Treatment of dichloromethane using gliding arc plasma. Intl J Green Energy 3(3):309–321

    Article  CAS  Google Scholar 

  • Indarto A, Choi JW, Lee H, Song HK (2006e) Methane conversion using dielectric barrier discharge: comparison with thermal process and catalyst effects. J Natur Gas Chem 15(2):87–92

    Article  CAS  Google Scholar 

  • Indarto A, Choi JW, Lee H, Song HK (2006f) Conversion of CO2 by gliding arc plasma. Environ Eng Sci 23(6):1047–1057

    Article  Google Scholar 

  • Indarto A, Choi JW, Lee H, Song HK (2006g) Effect of additive gases on methane conversion using gliding arc discharge. Energy 31:2650–2659

    Article  Google Scholar 

  • Indarto A, Yang DR, Azhari CH, Mohtar WH, Choi JW, Lee H, Song HK (2007a) Advanced VOCs decomposition method by gliding arc plasma. Chem Eng J 131(1–3):337–341

    Article  CAS  Google Scholar 

  • Indarto A, Yang DR, Choi JW, Lee H, Song HK (2007b) CCl4 decomposition by gliding arc plasma: role of C2 compounds on products distribution. Chem Eng Comm 19(8):1111–1125

    Article  Google Scholar 

  • Indarto A, Yang DR, Choi JW, Lee H, Song HK (2007c) Gliding arc plasma processing of CO2 conversion. J Hazard Mat 146(1–2):309–315

    Article  CAS  Google Scholar 

  • Indarto A, Coowanitwong N, Choi JW, Lee H, Song HK (2008) Kinetic modeling of plasma methane conversion in a dielectric barrier discharge. Fuel Process Technol 89(2):214–219

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancers (1987) Monographs on the evaluation of carcinogenic risk to humans, Supplements 7

  • Jeong H-K, Kim S-C, Han C, Lee H, Song HK, Na B-K (2001) Conversion of methane to higher hydrocarbons in pulsed DC barrier discharge at atmospheric pressure. Korean J Chem Eng 18(2):196–201

    Article  CAS  Google Scholar 

  • Kado S, Sekine Y, Nozaki T, Okazaki K (2004) Diagnosis of atmospheric pressure low temperature plasma and application to high efficient methane conversion. Catal. Today 89:47–55

    Article  CAS  Google Scholar 

  • Kiani B, Hamamoto Y, Akisawa A, Kashiwagi T (2004) CO2 mitigating effects by waste heat utilization from industry sector to metropolitan areas. Energy 29:2061–2075

    Article  CAS  Google Scholar 

  • Kim S-S, Lee H, Choi J-W, Na B-K, Song HK (2003a) Kinetics of the methane decomposition in a dielectric-barrier discharge. J Ind Eng Chem 9(6):787–791

    CAS  Google Scholar 

  • Kim S-S, Lee H, Na B-K, Song HK (2003b) Reaction pathways of the methane decomposition in a dielectric-barrier discharge. Korean J Chem Eng 20(5):869–872

    Article  CAS  Google Scholar 

  • Kim KS, Nam JS, Choi SI, Hong SH (2004a) Thermal plasma decomposition of methane for production of hydrogen and carbon black Proc 5th Int Symp Pulsed Power and Plasma Appl pp. 379–385

  • Kim S-S, Lee H, Na B-K, Song HK (2004b) Plasma-assisted reduction of supported metal catalyst using atmospheric dielectric-barrier discharge. Catal Today 89:193–200

    Article  CAS  Google Scholar 

  • Kobayashi A, Osaki K, Yamabe C (2002) Treatment of CO2 gas by high-energy type plasma. Vacuum 65:475–479

    Article  CAS  Google Scholar 

  • Koch M, Cohn DR, Patrick RM, Schuetze MP, Bromberg L, Reilly D, Hadidi K, Thomas P, Falkos P (1995) Electron beam atmospheric pressure cold plasma decomposition of carbon tetrachloride and trichloroethylene. Environ Sci Technol 29:2946–2952

    Article  CAS  Google Scholar 

  • Kogelschatz U (2003) Dielectric-barrier discharges Principle and applications. Plasma Chem Plasma Process 23(1):1–46

    Article  CAS  Google Scholar 

  • Kohno H, Berezin AA, Chang JS, Tamura M, Yamamoto T, Shibuya A, Honda S (1998) Destruction of volatile organic compounds used in a semiconductorindustry by a capillary tube discharge reactor. IEEE Trans Ind Appl 34(5):953–966

    Article  CAS  Google Scholar 

  • Krawczyk K, Mlotek M (2001) Combined plasma-catalytic processing of nitrous oxide. Appl Catal B: Environ 30:233–245

    Article  CAS  Google Scholar 

  • Krawczyk K, Ulejczyk B (2003) Decomposition of chloromethanes in gliding discharges. Plasma Chem Plasma Process 23(2):262–281

    Article  Google Scholar 

  • Krawczyk K, Ulejczyk B (2004) Influence of water vapor on CCl4 and CHCl3 conversion in gliding discharge. Plasma Chem Plasma Process 24(2):155–167

    Article  CAS  Google Scholar 

  • Larkin DW, Lobban LL, Mallinson RG (2001) Production of organic oxygenates in the partial oxidation of methane in a silent electric discharge reactor. Ind Eng Chem Res 40:1594–1601

    Article  CAS  Google Scholar 

  • Lee WJ, Chen CY, Lin WC, Wang YT, Chin CJ (1996) Phosgene formation from the decomposition of 1, 1–C2H2Cl2 contained gas in an RF plasma reactor. J Hazard Mat 48:51–67

    Article  CAS  Google Scholar 

  • Lee H, Savinov SY, Song HK, Na B-K (2001) Estimation of the methane conversion in a capacitively coupled radio-frequency discharge. J Chem Eng Jpn 34(11):1356–1365

    Article  CAS  Google Scholar 

  • Legrand JC, Diamy AM, Hrach R, Hrachova V (1997) Kinetic of reaction in CH4/N2 afterglow plasma. Vacuum 48:671–675

    Article  CAS  Google Scholar 

  • Legrand JC, Diamy AM, Hrach R, Hrachova V (1999) Mechanism of methane decomposition in nitrogen afterglow plasma. Vacuum 52:27–32

    Article  CAS  Google Scholar 

  • Li R, Yamaguchi Y, Yin S, Tang Q, Sato T (2004) Influence of dielectric barrier materials to the behavior of dielectric discharge plasma for CO2 decomposition. Solid State Ionics 172:235–238

    Article  CAS  Google Scholar 

  • Liu C, Marafee A, Mallinson R, Lobban L (1997) Methane conversion to higher hydrocarbons in a corona discharge over metal oxide catalysts with OH groups. Appl Catal A: Gen 164:21–33

    Article  CAS  Google Scholar 

  • Lou JC, Chang YS (1997) Thermal oxidation of chloroform. Combust Flame 109:188–197

    Article  CAS  Google Scholar 

  • Lunsford JH (2000) Catalytic conversion of methane to more useful chemicals and fuels: a challenge for 21st century. Catal. Today 63:165–174

    Article  CAS  Google Scholar 

  • Maezono I, Chang J-S (1990) Reduction of CO2 from combustion gases by DC corona torches. IEEE Trans Ind Appl 26(4):651–655

    Article  CAS  Google Scholar 

  • Nichipor H, Dashouk E, Chmielewski AG, Zimek Z, Bulka S (2000) A theoretical study on decomposition of carbon tetrachloride, trichloroethylene and ethyl bromide in dry air under the influence of an electron beam. Rad Phys Chem 57:519–525

    Article  CAS  Google Scholar 

  • Oda T, Takahahshi T, Yamaji K (2002) Nonthermal plasma processing for dilute VOCs decomposition. IEEE Trans Ind Appl 38(3):873–878

    Article  CAS  Google Scholar 

  • Penetrante BM, Hsiao MC, Bardsley JN, Merritt BT, Vogtlin GE, Wallman PH, Kuthi A, Burkhart CP, Bayless JR (1995) Electron beam and pulsed corona processing of carbon-tetrachloride in atmospheric pressure gas streams. Phys Lett A 209:69–77

    Article  CAS  Google Scholar 

  • Raizer P (1997) Gas discharge physics. Springer, Berlin

    Google Scholar 

  • Roch JR (1995) Industrial Plasma Engineering: Volume 1 Principles, Univ Tennessee

  • Sanhueza E (2001) Hydrochloric acid from chlorocarbons: a significant source of background rain acidity. Tellus 53B:122–132

    CAS  Google Scholar 

  • Savinov SY, Lee H, Song HK, Na B-K (1999) Decomposition of methane and carbon dioxide in a radio-frequency discharge. Ind Eng Chem Res 38:2540–2547

    Article  CAS  Google Scholar 

  • Savinov SY, Lee H, Song HK, Na B-K (2002) The decomposition of CO2 in glow discharge. Korean J Chem Eng 19(4):564–566

    Article  CAS  Google Scholar 

  • Savinov SY, Lee H, Song HK, Na B-K (2004) A kinetic study on the conversion of methane to higher hydrocarbons in a radio-frequency discharge. Korean J Chem Eng 21(3):1–10

    Article  Google Scholar 

  • Shah JJ, Singh HB (1988) Distribution of volatile organic chemicals in outdoor and indoor air. Environ Sci Technol 22:1381–1388

    Article  CAS  Google Scholar 

  • Song H-K, Lee H, Choi J-W, Na B-K (2004a) Effect of electrical pulse forms on the CO2 reforming of methane using atmospheric dielectric barrier discharge. Plasma Chem Plasma Process 24(1):57–71

    Article  Google Scholar 

  • Song HK, Choi J-W, Yue SH, Lee H, Na B-K (2004b) Synthesis gas production via dielectric barrier discharge over Ni/γ-Al2O3 catalyst. Catal Today 89:27–33

    Article  CAS  Google Scholar 

  • Taylor PH, Dellinger B (1988) Thermal degradation characteristics of chloromethane mixtures. Environ Sci Technol 22:438–447

    Article  CAS  Google Scholar 

  • Tonkyn RG, Barlow SE, Orlando TM (1996) Destruction of carbon tetrachloride in a dielectric barrier/packed-bed corona reactor. J Appl Phys 80(9):4877–4886

    Article  CAS  Google Scholar 

  • Wang J-Y, **a G-G, Huang A, Suib SL, Hayashi Y, Matsumoto H (1999) CO2 decomposition using glow discharge plasmas. J Catal 185:152–159

    Article  CAS  Google Scholar 

  • Wen Y, Jiang X (2001) Decomposition of CO2 using pulsed corona discharges combined with catalyst. Plasma Chem Plasma Process 21(4):665–678

    Article  CAS  Google Scholar 

  • Yabe N (2004) An analysis of CO2 emissions of Japanese industries during the period between 1985 and 1995. Energy Policy 32:595–610

    Article  Google Scholar 

  • Yamaji K (1997) A study of the role of end-of-pipe technologies in reducing CO2 emissions. Waste Manag 17(5/6):295–302

    CAS  Google Scholar 

  • Yamamoto T, Ramanathan K, Lawless PA, Enser DS, Newsome JR (1992) Control of volatile organic compounds by an ac energized ferroelectric pellet reactor and a pulsed corona reactor. IEEE Trans Ind Appl 28(3):528–534

    Article  CAS  Google Scholar 

  • Yao S, Nakayama A, Suzuki E (2001) Acetylene and hydrogen from pulsed plasma conversion of methane. Catal Today 71:219–223

    Article  CAS  Google Scholar 

  • Zhang Y-p, Li Y, Wang Y, Liu C-j, Eliasson B (2003) Plasma methane conversion in the presence of carbon dioxide using dielectric-barrier discharges. Catal Today 83:101–109

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonius Indarto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Indarto, A., Choi, JW., Lee, H. et al. Decomposition of greenhouse gases by plasma. Environ Chem Lett 6, 215–222 (2008). https://doi.org/10.1007/s10311-008-0160-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-008-0160-3

Keywords

Navigation