Log in

Litter carbon inputs to the mineral soil of Japanese Brown forest soils: comparing estimates from the RothC model with estimates from MODIS

  • Original Article
  • Published:
Journal of Forest Research

Abstract

The level of organic carbon found in soil is the result of the balance between litter input to the soil and decomposition. Litter input to the soil is closely related to net primary production (NPP); at equilibrium, the NPP is equal to the litter input to soil. Plant litter input to a depth of 30 cm in the mineral soil was estimated for Japanese forest using the Rothamsted Carbon model (RothC) and an average value of soil organic carbon (SOC) content, and was compared with estimated litter inputs from the NPP dataset from Moderate Resolution Imaging Spectroradiometer (MODIS). A Monte Carlo uncertainty analysis of the input SOC was also conducted in order to reveal the sensitivity and uncertainty of the model to input SOC. The litter carbon input calculated using RothC and that derived from MODIS NPP were positively correlated, but the mean estimated litter input from RothC was 17.2% smaller than that estimated from MODIS. Map** the normalized difference revealed spatial biases in the difference. The discrepancy was probably because of the different temperature controls for the MODIS algorithm and the RothC model, and also our simple assumption in the RothC calculation. This comparison reveals a close link between litter inputs estimated from SOC data and litter inputs estimated from satellite-based NPP data. The discrepancies between the estimates merit further study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexandrov GA, Oikawa T, Esser G (1999) Estimating terrestrial NPP: what the data say and how they may be interpreted? Ecol Model 117:361–369

    Article  CAS  Google Scholar 

  • Alexandrov GA, Oikawa T, Yamagata Y (2002) The scheme for globalization of a process-based model explaining gradations in terrestrial NPP and its application. Ecol Model 148:293–306

    Article  Google Scholar 

  • Cannell MGR (1982) World forest biomass and primary production data. Academic Press, Tokyo

    Google Scholar 

  • Carvalhais N, Reichstein M, Seixas J, Collatz GJ, Pereira JS, Berbigier P, Carrara A, Granier A, Montagnani L, Papale D, Rambal S, Sanz MJ, Valentini R (2008) Implications of the carbon cycle steady state assumption for biogeochemical modeling performance and inverse parameter retrieval. Glob Biogeochem Cycles 22:GB2007. doi:101029/2007GB003033

    Google Scholar 

  • Chiesi M, Maselli F, Moriondo M, Fibbi L, Bindi M, Running SW (2007) Application of BIOME-BGC to simulate Mediterranean forest processes. Ecol Model 206:179–190

    Article  Google Scholar 

  • Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinsch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  CAS  PubMed  Google Scholar 

  • Coleman K, Jenkinson DS (1996) RothC-26.3—a model for the turnover of carbon in soil. In: Powlson DS, Smith P, Smith JU (eds) Evaluation of soil organic matter models: using existing long-term datasets. Springer, Berlin, pp 237–246

    Google Scholar 

  • Coleman K, Jenkinson DS, Crocker GJ, Grace PR, Klír J, Körschens M, Poultion PR, Richter DD (1997) Simulating trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma 81:29–44

    Article  Google Scholar 

  • Cramer W, Kicklighter DW, Bondeau A, Moore B III, Churkina G, Nemry B, Ruimy A, Schloss AL (1999) Comparing global models of terrestrial net primary productivity (NPP): overview and key results. Glob Change Biol 5:1–15

    Article  Google Scholar 

  • Esser G, Lieth HFH, Scurlock JMO, Olson RJ (1997) Worldwide estimates and bibliography of net primary productivity derived from pre-1982 publications. Oak Ridge National Laboratory, Tennessee

    Book  Google Scholar 

  • Falloon P, Smith P (2002) Simulating SOC changes in long-term experiments with RothC and CENTURY: model evaluation for a regional scale application. Soil Use Manag 18:101–111

    Article  Google Scholar 

  • Falloon P, Smith P, Coleman K, Marshall S (1998) Estimating the size of the inert organic matter pool from total soil organic carbon content for use in the Rothamsted carbon model. Soil Biol Biochem 30:1207–1211

    Article  CAS  Google Scholar 

  • Falloon P, Smith P, Bradley RI, Milne R, Tomlinson R, Viner D, Livermore M, Brown T (2006) RothCUK—a dynamic modelling system for estimating changes in soil C from mineral soils at 1-km resolution in the UK. Soil Use Manag 22:274–288

    Article  Google Scholar 

  • FAO, ISRIC, and ISSS (1998) World reference base for soil resources. FAO World Soil Resources Reports 84, 88 pp

  • Forest Soil Division (1976) Classification of forest soil in Japan (1975). Bull Gov For Exp Stn 280:1–28 (in Japanese with English summary)

    Google Scholar 

  • Gottschalk P, Wattenbach M, Neftel A, Fuhrer J, Jones M, Lanigan G, Davis P, Campbell C, Soussana J-F, Smith P (2007) The role of measurement uncertainties for the simulation of grassland net ecosystem exchange (NEE) in Europe. Agric Ecosyst Environ 121:175–185

    Article  CAS  Google Scholar 

  • Hiradate S, Nakadai T, Shindo H, Yoneyama T (2004) Carbon source of humic substances in some Japanese volcanic ash soils determined by carbon stable isotopic ratio, delta C-13. Geoderma 119:133–141

    Article  CAS  Google Scholar 

  • Hoshika Y, Hajima T, Shimizu Y, Omasa K (2007) A comparison of estimated net primary productivity between under the current forest vegetation and under the potential natural vegetation in Japan. J Agric Meteorol 63:33–39 (in Japanese with English summary)

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Ito A (2003) A global-scale simulation of the CO2 exchange between the atmosphere and the terrestrial biosphere with a mechanistic model including stable carbon isotopes, 1953–1999. Tellus B 55:596–612

    Article  Google Scholar 

  • Ito A, Sasai T (2006) A comparison of simulation results from two terrestrial carbon cycle models using three climate data sets. Tellus B 58:513–522

    Article  Google Scholar 

  • Japan Meteorological Agency (2002) Mesh climate data 2000 (CD-ROM). Japan Meteorological Agency, Tokyo (in Japanese)

    Google Scholar 

  • Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Philos Trans R Soc B 329:361–368

    Article  CAS  Google Scholar 

  • Jenkinson DS, Coleman K (1994) Calculating the annual input of organic-matter to soil from measurements of total organic-carbon and radiocarbon. Eur J Soil Sci 45:167–174

    Article  Google Scholar 

  • Jenkinson DS, Harkness DD, Vance ED, Adams DE, Harrison AF (1992) Calculating net primary production and annual input of organic-matter to soil from the amount and radiocarbon content of soil organic-matter. Soil Biol Biochem 24:295–308

    Article  Google Scholar 

  • Jenkinson DS, Meredith J, Kinyamario JI, Warren GP, Wong MTF, Harkness DD, Bol R, Coleman K (1999) Estimating net primary production from measurements made on soil organic-matter. Ecology 80:2762–2773

    Article  Google Scholar 

  • Kurz WA, Stinson G, Rampley G (2008) Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances? Philos Trans R Soc B 363:2261–2269

    Article  Google Scholar 

  • Linacre ET (1977) A simple formula for estimating evaporation rates in various climates, using temperature data alone. Agric Meteorol 18:409–427

    Article  Google Scholar 

  • Maselli F, Chiesi M, Fibbi L, Moriondo M (2008) Integration of remote sensing and ecosystem modelling techniques to estimate forest net carbon uptake. Int J Remote Sens 29:2437–2443

    Article  Google Scholar 

  • Ministry of Land, Infrastructure, Transport and Tourism (1979) Digital national land information; G05-54M. http://nlftp.mlit.go.jp/ksj/

  • Morisada K, Ono K, Kanomata H (2004) Organic carbon stock in forest soils in Japan. Geoderma 119:21–32

    Article  CAS  Google Scholar 

  • Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC) (2005) MODIS ASCII subsets, Oak Ridge, Tennessee, USA. http://www.modis.ornl.gov/modis/index.cfm. Accessed 30 Nov 2005

  • Pan Y, Birdsey R, Hom J, Mccullough K, Clark K (2006) Improved estimates of net primary production from MODIS satellite data at regional and local scales. Ecol Appl 16:125–132

    Article  PubMed  Google Scholar 

  • Peltoniemi M, Thurig E, Ogle S, Palosuo T, Schrumpf M, Wutzler T, Butterbach-Bahl K, Chertov O, Komarov A, Mikhailov A, Gardenas A, Perry C, Liski J, Smith P, Makipaa R (2007) Models in country scale carbon accounting of forest soils. Silva Fenn 41:575–602

    Google Scholar 

  • R Development Core Team (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Raich J, Russell AE, Vitousek PM (1997) Primary productivity and ecosystem development along an elevational gradient on Mauna Loa, Hawai’i. Ecology 78:707–721

    Google Scholar 

  • Running SW, Thornton PE, Nemani R, Glassy JM (2000) Global terrestrial gross and net primary productivity from the earth observing system. In: Sala OE, Jackson RB, Mooney HA, Howarth RW (eds) Methods in ecosystem science. Springer, New York, pp 44–57

    Google Scholar 

  • Saito H (1981) Materials for the studies of litterfall in forest stands. Bull Kyoto Pref Univ For 25:78–89 (in Japanese)

    Google Scholar 

  • Sasse J (1998) The forests of Japan. Japan Forest Technical Association, Tokyo

    Google Scholar 

  • Shirato Y, Hakamata T, Taniyama I (2004) Modified Rothamsted carbon model for Andosols and its validation: changing humus decomposition rate constant with pyrophosphate-extractable Al. Soil Sci Plant Nutr 50:149–158

    CAS  Google Scholar 

  • Smith P (2002) Soil organic matter modeling. In: Lal R (ed) Encyclopedia of soil science. Marcel Dekker, New York

    Google Scholar 

  • Smith P (2008) Land use change and soil organic carbon dynamics. Nutr Cycl Agroecosyst 81:169–178

    Article  Google Scholar 

  • Smith P, Powlson DS, Glendining MJ, Smith JU (1997) Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Glob Change Biol 3:67–79

    Article  Google Scholar 

  • Smith J, Smith P, Wattenbach M, Zaehle S, Hiederer R, Jones RJA, Montanarella L, Rounsevell MDA, Reginster I, Ewert F (2005) Projected changes in mineral soil carbon of European croplands and grasslands, 1990–2080. Glob Change Biol 11:2141–2152

    Article  Google Scholar 

  • Smith P, Smith J, Wattenbach M, Meyer J, Lindner M, Zaehle S, Hiederer R, Jones RJA, Montanarella L, Rounsevell M, Reginster I, Kankaanpaa S (2006) Projected changes in mineral soil carbon of European forests, 1990–2100. Can J Soil Sci 86:159–169

    CAS  Google Scholar 

  • Turner DP, Ollinger S, Smith ML, Krankina O, Gregory M (2004) Scaling net primary production to a MODIS footprint in support of Earth observing system product validation. Int J Remote Sens 25:1961–1979

    Article  Google Scholar 

  • Turner DP, Ritts WD, Cohen WB, Maeirsperger TK, Gower ST, Kirschbaum AA, Running SW, Zhao MS, Wofsy SC, Dunn AL, Law BE, Campbell JL, Oechel WC, Kwon HJ, Meyers TP, Small EE, Kurc SA, Gamon JA (2005) Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring. Glob Change Biol 11:666–684

    Article  Google Scholar 

  • Turner DP, Ritts WD, Zhao MS, Kurc SA, Dunn AL, Wofsy SC, Small EE, Running SW (2006) Assessing interannual variation in MODIS-based estimates of gross primary production. IEEE Trans Geosci Remote 44:1899–1907

    Article  Google Scholar 

  • White T, Luckai N, Larocque GR, Kurz WA, Smyth C (2008) A practical approach for assessing the sensitivity of the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3). Ecol Model 219:373–382

    Article  Google Scholar 

  • Wutzler T, Reichstein M (2007) Soils apart from equilibrium—consequences for soil carbon balance modelling. Biogeosciences 4:125–136

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the OECD Co-operative Research Programme on Biological Resource Management for Sustainable Agriculture Systems and KAKENHI (18880032). PS is a Royal Society–Wolfson Research Merit Award holder. The authors thank K. Coleman for discussion on this study. We thank two anonymous reviewers and the editor for helpful comments on an earlier draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shoji Hashimoto.

About this article

Cite this article

Hashimoto, S., Wattenbach, M. & Smith, P. Litter carbon inputs to the mineral soil of Japanese Brown forest soils: comparing estimates from the RothC model with estimates from MODIS. J For Res 16, 16–25 (2011). https://doi.org/10.1007/s10310-010-0209-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10310-010-0209-6

Keywords

Navigation