Log in

Engineering a newly isolated Bacillus licheniformis strain for the production of (2R,3R)-butanediol

  • Bioenergy/Biofuels/Biochemicals - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Several microorganisms can produce 2,3-butanediol (BDO), an industrially promising chemical. In this study, a Bacillus licheniformis named as 4071, was isolated from soil sample. It is a GRAS (generally recognized as safe) strain and could over-produce 2,3-BDO. Due to its mucoid forming characteristics, UV-random mutagenesis was carried out to obtain a mucoid-free strain, 4071-15. As a result, capabilities of 4071-15 strain in terms of transformation efficiency of bacillus plasmids (pC194, pUB110, and pUCB129) and fermentation performance were highly upgraded compared to those of the parent strain. In particular, 4071-15 strain could produce 123 g/L of 2,3-BDO in a fed-batch fermentation in which the ratio of (2R,3S)- to (2R,3R)-form isomers was 1:1. To increase the selectivity of (2R,3R)-BDO, budC gene was deleted by using temperature-sensitive gene deletion process via homologous recombination. The 4071-15 △budC mutant strain dramatically increased selectivity of (2R,3R)-BDO to 91% [96.3 g/L of (2R,3R)-BDO and 9.33 g/L of (2R,3S)-BDO], which was 43% higher than that obtained by the parent strain. This study has shown the potential of an isolate for 2,3-BDO production, and that the ratio of 2,3-BDO can be controlled by genetic engineering depending on its industrial usage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bai F, Dai L, Fan J, Truong N, Rao B, Zhang L, Shen Y (2015) Erratum to: engineered Serratia marcescens for efficient (3R)-acetoin and (2R,3R)-2,3-butanediol production. J Ind Microbiol Biotechnol 42:977. https://doi.org/10.1007/s10295-015-1610-0

    Article  CAS  PubMed  Google Scholar 

  2. Bialkowska AM, Gromek E, Krysiak J, Sikora B, Kalinowska H, Jedrzejczak-Krzepkowska M, Kubik C, Lang S, Schutt F, Turkiewicz M (2015) Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059. J Ind Microbiol Biotechnol 42:1609–1621. https://doi.org/10.1007/s10295-015-1697-3

    Article  CAS  PubMed  Google Scholar 

  3. Celinska E, Grajek W (2009) Biotechnological production of 2,3-butanediol–current state and prospects. Biotechnol Adv 27:715–725. https://doi.org/10.1016/j.biotechadv.2009.05.002

    Article  CAS  PubMed  Google Scholar 

  4. Chevenet F, Brun C, Banuls AL, Jacq B, Christen R (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinform 7:439. https://doi.org/10.1186/1471-2105-7-439

    Article  CAS  Google Scholar 

  5. Choi S, Song CW, Shin JH, Lee SY (2015) Biorefineries for the production of top building block chemicals and their derivatives. Metab Eng 28:223–239. https://doi.org/10.1016/j.ymben.2014.12.007

    Article  CAS  PubMed  Google Scholar 

  6. Ge L, Wu X, Chen J, Wu J (2011) A new method for industrial production of 2,3-butanediol. J Biomater Nanobiotechnol 2:335–336

    Article  CAS  Google Scholar 

  7. Ge Y, Li K, Li L, Gao C, Zhang L, Ma C, Xu P (2016) Contracted but effective: production of enantiopure 2,3-butanediol by thermophilic and GRAS Bacillus licheniformis. Green Chem 18:4693–4703

    Article  CAS  Google Scholar 

  8. Buddingh GJ (1974) Bergey’s manual of determinative bacteriology. The Williams and Wilkins Company, Philadelphia

    Google Scholar 

  9. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704. https://doi.org/10.1080/10635150390235520

    Article  PubMed  Google Scholar 

  10. Harden A, Walpole G (1906) 2,3-Butylene glycol fermentation by Aerobacter aerogenes. Proc Royal Soc Lond 77:399–405

    Article  CAS  Google Scholar 

  11. Hassler T, Schieder D, Pfaller R, Faulstich M, Sieber V (2012) Enhanced fed-batch fermentation of 2,3-butanediol by Paenibacillus polymyxa DSM 365. Bioresour Technol 124:237–244. https://doi.org/10.1016/j.biortech.2012.08.047

    Article  CAS  PubMed  Google Scholar 

  12. Ji XJ, Huang H, Ouyang PK (2011) Microbial 2,3-butanediol production: a state-of-the-art review. Biotechnol Adv 29:351–364. https://doi.org/10.1016/j.biotechadv.2011.01.007

    Article  CAS  PubMed  Google Scholar 

  13. Ji XJ, Huang H, Zhu JG, Ren LJ, Nie ZK, Du J, Li S (2010) Engineering Klebsiella oxytoca for efficient 2, 3-butanediol production through insertional inactivation of acetaldehyde dehydrogenase gene. Appl Microbiol Biotechnol 85:1751–1758. https://doi.org/10.1007/s00253-009-2222-2

    Article  CAS  PubMed  Google Scholar 

  14. Jurchescu IM, Hamann J, Zhou X, Ortmann T, Kuenz A, Prusse U, Lang S (2013) Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Appl Microbiol Biotechnol 97:6715–6723. https://doi.org/10.1007/s00253-013-4981-z

    Article  CAS  PubMed  Google Scholar 

  15. Li L, Chen C, Li K, Wang Y, Gao C, Ma C, Xu P (2014) Efficient simultaneous saccharification and fermentation of inulin to 2,3-butanediol by thermophilic Bacillus licheniformis ATCC 14580. Appl Environ Microbiol 80:6458–6464. https://doi.org/10.1128/AEM.01802-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li L, Li K, Wang K, Chen C, Gao C, Ma C, Xu P (2014) Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain. Bioresour Technol 170:256–261. https://doi.org/10.1016/j.biortech.2014.07.101

    Article  CAS  PubMed  Google Scholar 

  17. Li L, Zhang L, Li K, Wang Y, Gao C, Han B, Ma C, Xu P (2013) A newly isolated Bacillus licheniformis strain thermophilically produces 2,3-butanediol, a platform and fuel bio-chemical. Biotechnol Biofuels 6:123. https://doi.org/10.1186/1754-6834-6-123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Naglich JG, Andrews RE Jr (1988) Tn916-dependent conjugal transfer of PC194 and PUB110 from Bacillus subtilis into Bacillus thuringiensis subsp. israelensis. Plasmid 20:113–126

    Article  CAS  PubMed  Google Scholar 

  19. Nickoloff JA (1995) Electroporation protocols for microorganisms. Springer Science and Business Media, Berlin

    Book  Google Scholar 

  20. Park JM, Rathnasingh C, Song H (2015) Enhanced production of (R, R)-2,3-butanediol by metabolically engineered Klebsiella oxytoca. J Ind Microbiol Biotechnol 42:1419–1425. https://doi.org/10.1007/s10295-015-1648-z

    Article  CAS  PubMed  Google Scholar 

  21. Park JM, Song H, Lee HJ, Seung D (2013) In silico aided metabolic engineering of Klebsiella oxytoca and fermentation optimization for enhanced 2,3-butanediol production. J Ind Microbiol Biotechnol 40:1057–1066. https://doi.org/10.1007/s10295-013-1298-y

    Article  CAS  PubMed  Google Scholar 

  22. Qi G, Kang Y, Li L, **ao A, Zhang S, Wen Z, Xu D, Chen S (2014) Deletion of meso-2,3-butanediol dehydrogenase gene budC for enhanced D-2,3-butanediol production in Bacillus licheniformis. Biotechnol Biofuels 7:16. https://doi.org/10.1186/1754-6834-7-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rahman MS, Xu CC, Ma K, Nanda M, Qin W (2017) High production of 2,3-butanediol by a mutant strain of the newly isolated Klebsiella pneumoniae SRP2 with increased tolerance towards glycerol. Int J Biol Sci 13:308–318. https://doi.org/10.7150/ijbs.17594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Richard A, Margaritis A (2003) Rheology, oxygen transfer, and molecular weight characteristics of poly(glutamic acid) fermentation by Bacillus subtilis. Biotechnol Bioeng 82:299–305. https://doi.org/10.1002/bit.10568

    Article  CAS  PubMed  Google Scholar 

  25. Sheng L, Kovacs K, Winzer K, Zhang Y, Minton NP (2017) Development and implementation of rapid metabolic engineering tools for chemical and fuel production in Geobacillus thermoglucosidasius NCIMB 11955. Biotechnol Biofuels 10:5. https://doi.org/10.1186/s13068-016-0692-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shih IL, Van YT, Yeh LC, Lin HG, Chang YN (2001) Production of a biopolymer flocculant from Bacillus licheniformis and its flocculation properties. Bioresour Technol 78:267–272. https://doi.org/10.1016/S0960-8524(01)00027-X

    Article  CAS  PubMed  Google Scholar 

  27. Soutschek-Bauer E, Scholz W, Grill E, Staudenbauer WL (1987) Thermostability and superhelicity of plasmid DNA in Bacillus stearothermophilus. Mol Gen Genet 209:575–579

    Article  CAS  PubMed  Google Scholar 

  28. Syu MJ (2001) Biological production of 2,3-butanediol. Appl Microbiol Biotechnol 55:10–18

    Article  CAS  PubMed  Google Scholar 

  29. Taylor MB, Juni E (1960) Stereoisomeric specificities of 2,3-butanediol dehydrogenases. Biochim Biophys Acta 39:448–457

    Article  CAS  PubMed  Google Scholar 

  30. Wang Q, Chen T, Zhao X, Chamu J (2012) Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production. Biotechnol Bioeng 109:1610–1621. https://doi.org/10.1002/bit.24427

    Article  CAS  PubMed  Google Scholar 

  31. **e NZ, Chen XR, Wang QY, Chen D, Du QS, Zhou GP, Huang RB (2017) Microbial routes to (2R,3R)-2,3-butanediol: recent advances and future prospects. Curr Top Med Chem 17:2433–2439. https://doi.org/10.2174/1568026617666170504101646

    Article  CAS  PubMed  Google Scholar 

  32. Xue G-P, Johnson JS, Dalrymple BP (1999) High osmolarity improves the electro-transformation efficiency of the gram-positive bacteria Bacillus subtilis and Bacillus licheniformis. J Microbiol Methods 34:183–191

    Article  CAS  Google Scholar 

  33. Yang T, Rao Z, Zhang X, Lin Q, **a H, Xu Z, Yang S (2011) Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens. J Basic Microbiol 51:650–658. https://doi.org/10.1002/jobm.201100033

    Article  CAS  PubMed  Google Scholar 

  34. Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang ST (2017) Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects. Crit Rev Biotechnol 37:990–1005. https://doi.org/10.1080/07388551.2017.1299680

    Article  CAS  PubMed  Google Scholar 

  35. Yang Z, Zhang Z (2018) Recent advances on production of 2, 3-butanediol using engineered microbes. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2018.03.019

    Article  PubMed  Google Scholar 

  36. Zhang CY, Peng XP, Li W, Guo XW, **ao DG (2014) Optimization of 2,3-butanediol production by Enterobacter cloacae in simultaneous saccharification and fermentation of corncob residue. Biotechnol Appl Biochem 61:501–509. https://doi.org/10.1002/bab.1198

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by the Biochemical Industry Promoting Technology Development Project (No. 10050407) funded by the Ministry of Trade, Industry and Energy (MOTIE, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyohak Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, C.W., Chelladurai, R., Park, J.M. et al. Engineering a newly isolated Bacillus licheniformis strain for the production of (2R,3R)-butanediol. J Ind Microbiol Biotechnol 47, 97–108 (2020). https://doi.org/10.1007/s10295-019-02249-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-019-02249-4

Keywords

Navigation