Log in

Functional manipulations of the tetramycin positive regulatory gene ttmRIV to enhance the production of tetramycin A and nystatin A1 in Streptomyces ahygroscopicus

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

A putative regulatory gene ttmRIV located in the tetramycin biosynthetic gene cluster was found in Streptomyces ahygroscopicus. In-frame deletion of ttmRIV led to abolishment of tetramycin and significant enhancement of nystatin A1, whose production reached 2.1-fold of the H42 parental strain. Gene complementation by an integrative plasmid carrying ttmRIV restored tetramycin biosynthesis revealed that ttmRIV was indispensable to tetramycin biosynthesis. Gene expression analysis of the H42 strain and its mutant strain ΔttmRIV via reverse transcriptase-PCR of the tetramycin gene cluster demonstrated that the expression levels of most biosynthetic genes were reduced in ΔttmRIV. Results of electrophoretic mobility shift assays showed that TtmRIV bound the putative promoters of several genes in the tetramycin pathway. Thus, TtmRIV is a pathway-specific positive regulator activating the transcription of the tetramycin gene cluster in S. ahygroscopicus. Providing an additional copy of ttmRIV under the control of the ermEp* promoter in the H42 strain boosted tetramycin A production to 3.3-fold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Antón N, Santos-Aberturas J, Mendes MV, Guerra SM, Martín JF, Aparicio JF (2007) PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis. Microbiology 153:3174–3183

    Article  PubMed  Google Scholar 

  2. Arias P, Fernández-Moreno MA, Malpartida F (1999) Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J Bacteriol 181:6958–6968

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Bierman M, Logan R, O’Brien K, Seno ET, Nagaraja Rao R, Schoner BE (1992) Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116:43–49

    Article  CAS  PubMed  Google Scholar 

  4. Brautaset T, Sekurova ON, Sletta H, Ellingsen TE, Strøm AR, Valla S, Zotchev SB (2000) Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. Chem Biol 7:395–403

    Article  CAS  PubMed  Google Scholar 

  5. Byrne B, Carmody M, Gibson E, Rawlings B, Caffrey P (2003) Biosynthesis of deoxyamphotericins and deoxyamphoteronolides by engineered strains of Streptomyces nodosus. Chem Biol 10:1215–1224

    Article  CAS  PubMed  Google Scholar 

  6. Cao B, Yao F, Zheng X, Cui D, Shao Y, Zhu C, Deng Z, You D (2012) Genome mining of the biosynthetic gene cluster of the polyene macrolide antibiotic tetramycin and characterization of a P450 monooxygenase involved in the hydroxylation of the tetramycin B polyol segment. ChemBioChem 15:2234–2242

    Article  Google Scholar 

  7. Carmody M, Byrne B, Murphy B, Breen C, Lynch S, Flood E, Finnan S, Caffrey P (2004) Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques. Gene 343:107–115

    Article  CAS  PubMed  Google Scholar 

  8. Dornberger K, Fügner R, Bradler G, Thrum H (1971) Tetramycin, a new polyene antibiotic. J Antibiot 24:172–177

    Article  CAS  PubMed  Google Scholar 

  9. Du Y, Chen S, Cheng L, Shen X, Tian Y, Li Y (2009) Identification of a novel Streptomyces chattanoogensis L10 and enhancing its natamycin production by overexpressing positive regulator ScnRII. J Microbiol 47:506–513

    Article  CAS  PubMed  Google Scholar 

  10. Fjærvik E, Zotchev SB (2005) Biosynthesis of the polyene macrolide antibiotic nystatin in Streptomyces noursei. Appl Microbiol Biotechnol 67:436–443

    Article  PubMed  Google Scholar 

  11. Janssen GR, Bibb MJ (1993) Derivatives of pUC18 that have BglII sites flanking a modified multiple cloning site and that retain the ability to identify recombinant clones by visual screening of Escherichia coli colonies. Gene 124:133–134

    Article  CAS  PubMed  Google Scholar 

  12. Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA (2000) Practical Streptomyces genetics. A laboratory manual. John Innes Foundation, Norwich

    Google Scholar 

  13. Kitani S, Ikeda H, Sakamoto T, Noguchi S, Nihira T (2009) Characterization of a regulatory gene, aveR, for the biosynthesis of avermectin in Streptomyces avermitilis. Appl Microbiol Biotechnol 82:1089–1096

    Article  CAS  PubMed  Google Scholar 

  14. Lane D, Prentki P, Chandler M (1992) Use of gel retardation to analyze protein–nucleic acid interactions. Microbiol Rev 56:509–528

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Li Q, Wang L, **e Y, Wang S, Chen R, Hong B (2013) SsaA, a member of a novel class of transcriptional regulators, controls sansanmycin production in Streptomyces sp. Strain SS through a feedback mechanism. J Bacteriol 195:2232–2243

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. MacNeil DJ, Gewain KM, Ruby CL, Dezeny G, Gibbons PH, MacNeil T (1992) Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111:61–68

    Article  CAS  PubMed  Google Scholar 

  17. Madduri K, Hutchinson CR (1995) Functional characterization and transcriptional analysis of the dnrR 1 locus, which controls daunorubicin biosynthesis in Streptomyces peucetius. J Bacteriol 177:1208–1215

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Mizuno T, Tanaka I (1997) Structure of the DNA-binding domain of the OmpR family of response regulators. Mol Microbiol 24:665–667

    Article  CAS  PubMed  Google Scholar 

  19. Novakova R, Rehakova A, Kutas P, Feckova L, Kormanec J (2011) The role of two SARP family transcriptional regulators in regulation of the auricin gene cluster in Streptomyces aureofaciens CCM 3239. Microbiology 157:1629–1639

    Article  CAS  PubMed  Google Scholar 

  20. Radics L, Incze M, Dornberger K, Thrum H (1982) Tetramycin B, a new polyene macrolide antibiotic: the structure of tetramycins A and B as studied by high-field NMR spectroscopy. Tetrahedron 38:183–189

    Article  CAS  Google Scholar 

  21. Ren J, Cui Y, Zhang F, Cui H, Ni X, Chen F, Li L, **a H (2014) Enhancement of nystatin production by redirecting precursor fluxes after disruption of the tetramycin gene from Streptomyces ahygroscopicus. Microbiol Res 169:602–608

    Article  CAS  PubMed  Google Scholar 

  22. Renata N, Alena R, Peter K, Lubomira F, Jan K (2011) The role of two SARP family transcriptional regulators in regulation of the auricin gene cluster in Streptomyces aureofaciens CCM 3239. Microbiology 157:1629–1639

    Article  Google Scholar 

  23. Retzlaff L, Distler J (1995) The regulator of streptomycin gene expression, StrR, of Streptomyces griseus is a DNA binding activator protein with multiple recognition sites. Mol Microbiol 18:151–162

    Article  CAS  PubMed  Google Scholar 

  24. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor, Cold Spring Harbor Laboratory

  25. Santos-Aberturas J, Payero TD, Vicente CM, Guerra SM, n Cañibano C, Martín JF, Aparicio JF (2011) Functional conservation of PAS–LuxR transcriptional regulators in polyene macrolide biosynthesis. Metab Eng 13:756–767

    Article  CAS  PubMed  Google Scholar 

  26. Santos-Aberturas J, Vicente CM, Guerra SM, Payero TD, Martín JF, Aparicio JF (2011) Molecular control of polyene macrolide biosynthesis direct binding of the regulator PimM to eight promoters of pimaricin genes and identification of binding boxes. J Biol Chem 286:9150–9161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Schmeling S, Narmandakh A, Schmitt O, Gad’on N, Schühle K, Fuchs G (2004) Phenylphosphate synthase: a new phosphotransferase catalyzing the first step in anaerobic phenol metabolism in Thauera aromatica. J Bacteriol 186:8044–8057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Schneider TD (1997) Information content of individual genetic sequences. J Theor Biol 189:427–441

    Article  CAS  PubMed  Google Scholar 

  29. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display consensus sequences. Nucl Acids Res 18:6097–6100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Sekurova ON, Brautaset T, Sletta H, Borgos SEF, Jakobsen ØM, Ellingsen TE, Strøm AR, Valla S, Zotchev SB (2004) In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. J Bacteriol 186:1345–1354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Taylor BL, Zhulin IB (1999) PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev 63:479–506

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Wei J, Meng X, Wang Q (2011) Enhanced production of aureofuscin by over-expression of AURJ3 M, positive regulator of aureofuscin biosynthesis in Streptomyce saureofuscus. Lett Appl Microbiol 52:322–329

    Article  CAS  PubMed  Google Scholar 

  33. Yu Q, Bai L, Zhou X, Deng Z (2012) Inactivation of the positive LuxR-type oligomycin biosynthesis regulators OlmRI and OlmRII increases avermectin production in Streptomyces avermitilis. Chin Sci Bull 57:869–876

    Article  CAS  Google Scholar 

  34. Yu Q, Du A, Liu T, Deng Z, He X (2012) The biosynthesis of the polyether antibiotic nanchangmycin is controlled by two pathway-specific transcriptional activators. Arch Microbiol 194:415–426

    Article  CAS  PubMed  Google Scholar 

  35. Zhang P, Zhao Z, Li H, Chen X, Deng Z, Bai L, Pang X (2015) Production of the antibiotic FR-008/Candicidin in Streptomyces sp. FR-008 is coregulated by two regulators, FscRI and FscRIV, from different transcription factor. Microbiology. doi:10.1099/mic.0.000033

    Google Scholar 

  36. Zhao X, Zhong L, Zhang Q, Xu C, Zhu H, Lu Z, Shen L, Wang G, Jia D (2010) Effect of tetramycin on mycelia growth and spore germination of rice blast pathogen. J Microbiol 30:43–45

    Google Scholar 

  37. Zhu D, He Y, Bai L, Deng Z (2008) Positive regulation of avermectin biosynthesis by AveR in Streptomyces avermitilis. J Shanghai Jiaotong Univ 42:1448–1452

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Liaoning Provincial Natural Science Foundation of China (2014020078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanzhang **a.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 859 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Ni, X., Shao, W. et al. Functional manipulations of the tetramycin positive regulatory gene ttmRIV to enhance the production of tetramycin A and nystatin A1 in Streptomyces ahygroscopicus . J Ind Microbiol Biotechnol 42, 1273–1282 (2015). https://doi.org/10.1007/s10295-015-1660-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-015-1660-3

Keywords

Navigation