Log in

Extractive fermentation for enhanced production of thailandepsin A from Burkholderia thailandensis E264 using polyaromatic adsorbent resin Diaion HP-20

  • Fermentation, Cell Culture and Bioengineering
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Thailandepsin A is natural product of Burkholderia thailandensis E264 with potent histone deacetylase inhibitory activities and promising anticancer activities. The titer of thailandepsin A is very low (less than 10 mg/l) from limited empirical fermentation. To facilitate preclinical evaluations and potentially clinical development of thailandepsin A, systematic optimization and extractive fermentation of thailandepsin A from B. thailandensis E264 culture in flasks were investigated in this pilot study. The main fermentation parameters—28°C, pH 7.0, inoculum ratio 1% (v/v), incubation duration 60 h, medium volume 26%, shaking speed 170 rpm, and chloroform as extracting solvent—were determined by single factor experiments. Polyaromatic adsorbent resin Diaion HP-20, when added at a concentration of 4% (w/v), was most effective to reduce feedback inhibition of thailandepsin A and to significantly increase the titer of target product. Central composite design was used to further optimize the fermentation medium for B. thailandensis E264. The optimized medium contains glucose 17.89 g/l, tryptone 34.98 g/l, potassium phosphate 24.84 g/l, and sodium citrate 0.01 g/l, which resulted in a large increase of the titer of thailandepsin A to 236.7 mg/l. Finally kinetic models based on the modified logistic and Luedeking–Piret equations were developed, delivering a good description of temporal variations of biomass, product, and substrate in the fermentation process, which could be used as references for develo** large-scale fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brett PJ, DeShazer D, Woods DE (1998) Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int J Syst Bacteriol 48:317–320

    Article  PubMed  CAS  Google Scholar 

  2. Cheng Y-Q, Wang C (2011) Histone deacetylase inhibitors and used thereof. US patent application no. 20110060021 A1, 10 Mar 2011

  3. du Preez JC, van Rensburg E, Kilian SG (2008) Kinetics of growth and leukotoxin production by Mannheimia haemolytica in continuous culture. J Ind Microbiol Biot 35(6):611–618. doi:10.1007/s10295-008-0324-y

    Article  CAS  Google Scholar 

  4. Haider MA, Pakshirajan K (2007) Screening and optimization of media constituents for enhancing lipolytic activity by a soil microorganism using statistically designed experiments. Appl Biochem Biotech 141(2–3):377–390

    Article  CAS  Google Scholar 

  5. Hara M, Asano K, Kawamoto I, Takiguchi T, Katsumata S, Takahashi K, Nakano H (1989) Leinamycin, a new antitumor antibiotic from Streptomyces: producing organism, fermentation and isolation. J Antibiot (Tokyo) 42(12):1768–1774

    Article  CAS  Google Scholar 

  6. He L, Xu YQ, Zhang XH (2008) Medium factor optimization and fermentation kinetics for phenazine-1-carboxylic acid production by Pseudomonas sp. M18G. Biotechnol Bioeng 100(2):250–259. doi:10.1002/bit.21767

    Google Scholar 

  7. Jia B, ** ZH, Lei YL, Mei LH, Li NH (2006) Improved production of pristinamycin coupled with an adsorbent resin in fermentation by Streptomyces pristinaespiralis. Biotechnol Lett 28(22):1811–1815. doi:10.1007/s10529-006-9157-9

    Article  PubMed  CAS  Google Scholar 

  8. Lam KS, Gustavson DR, Veitch JA, Forenza S (1993) The effect of cerulenin on the production of esperamicin A1 by Actinomadura verrucosospora. J Ind Microbiol 12(2):99–102

    Article  PubMed  CAS  Google Scholar 

  9. Lee JC, Park HR, Park DJ, Lee HB, Kim YB, Kim CJ (2003) Improved production of teicoplanin using adsorbent resin in fermentations. Lett Appl Microbiol 37(3):196–200. doi:10.1046/j.1472-765X.2003.01374.x

    Article  PubMed  CAS  Google Scholar 

  10. Lee JC, Park HR, Park SH, Park DJ, Lee HB, Kim YB, Kim CJ (2003) Improved production of teicoplanin using adsorbent resin in fermentations (vol 37, pg 195, 2003). Lett Appl Microbiol 37(4):360. doi:10.1046/j.1472-765X.2003.01404.x

    Article  CAS  Google Scholar 

  11. Li Y, Jiang H, Xu Y, Zhang X (2008) Optimization of nutrient components for enhanced phenazine-1-carboxylic acid production by gacA-inactivated Pseudomonas sp. M18G using response surface method. Appl Microbiol Biotechnol 77(6):1207–1217. doi:10.1007/s00253-007-1213-4

    Google Scholar 

  12. Li YQ, Jiang HX, Du XL, Huang XQ, Zhang XH, Xu YH, Xu YQ (2010) Enhancement of phenazine-1-carboxylic acid production using batch and fed-batch culture of gacA inactivated Pseudomonas sp M18G. Bioresour Technol 101(10):3649–3656. doi:10.1016/j.biortech.2009.12.120

    Article  PubMed  CAS  Google Scholar 

  13. Luedeking R, Piret E (1959) A kinetic study of the lactic acid fermentation: batch process at controlled pH. J Biochem Microbiol Technol Eng 1:393–431

    Article  CAS  Google Scholar 

  14. Mann BS, Johnson JR, Cohen MH, Justice R, Pazdur R (2007) FDA approval summary: vorinostat for treatment of advanced primary cutaneous T-cell lymphoma. Oncologist 12(10):1247–1252. doi:10.1634/theoncologist.12-10-1247

    Article  PubMed  CAS  Google Scholar 

  15. Marshall VP, McWethy SJ, Sirotti JM, Cialdella JI (1990) The effect of neutral resins on the fermentation production of rubradirin. J Ind Microbiol 5(5):283–287

    Article  PubMed  CAS  Google Scholar 

  16. Miller G (1959) Use of dinitrosalicylic acid reagent for the determination of reducing sugars. Anal Chem 31:426–428

    Article  CAS  Google Scholar 

  17. Mundra P, Desai K, Lele SS (2007) Application of response surface methodology to cell immobilization for the production of palatinose. Bioresour Technol 98(15):2892–2896. doi:10.1016/j.biortech.2006.09.046

    Article  PubMed  CAS  Google Scholar 

  18. Murthy MSRC, Swaminathan T, Rakshit SK, Kosugi Y (2000) Statistical optimization of lipase catalyzed hydrolysis of methyloleate by response surface methodology. Bioprocess Eng 22(1):35–39

    Article  CAS  Google Scholar 

  19. Nagata H, Ochiai K, Aotani Y, Ando K, Yoshida M, Takahashi I, Tamaoki T (1997) Lymphostin (LK6-A), a novel immunosuppressant from Streptomyces sp. KY11783: taxonomy of the producing organism, fermentation, isolation and biological activities. J Antibiot (Tokyo) 50(7):537–542

    Google Scholar 

  20. Parawira W, Tekere M (2011) Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol 31(1):20–31. doi:10.3109/07388551003757816

    Article  PubMed  CAS  Google Scholar 

  21. ** S (ed) (2000) Microbiology. Higher Education, Bei**g

    Google Scholar 

  22. Sayyad SA, Panda BP, Javed S, Ali M (2007) Optimization of nutrient parameters for lovastatin production by Monascus purpureus MTCC 369 under submerged fermentation using response surface methodology. Appl Microbiol Biotechnol 73(5):1054–1058. doi:10.1007/s00253-006-0577-1

    Article  PubMed  CAS  Google Scholar 

  23. Singh MP, Leighton MM, Barbieri LR, Roll DM, Urbance SE, Hoshan L, McDonald LA (2010) Fermentative production of self-toxic fungal secondary metabolites. J Ind Microbiol Biotechnol 37(4):335–340. doi:10.1007/s10295-009-0678-9

    Article  PubMed  CAS  Google Scholar 

  24. FDA (2010) StatBite: FDA oncology drug product approvals in 2009. J Natl Cancer Inst 102(4):219. doi:10.1093/jnci/djq030

    Google Scholar 

  25. Tanyildizi MS, Ozer D, Elibol M (2005) Optimization of alpha-amylase production by Bacillus sp using response surface methodology. Process Biochem 40(7):2291–2296. doi:10.1016/j.procbio.2004.06.018

    Article  CAS  Google Scholar 

  26. Tisma M, Sudar M, Vasic-Racki D, Zelic B (2010) Mathematical model for Trametes versicolor growth in submerged cultivation. Bioproc Biosyst Eng 33(6):749–758. doi:10.1007/s00449-009-0398-6

    Article  CAS  Google Scholar 

  27. Vaiphei ST, Pandey G, Mukherjee KJ (2009) Kinetic studies of recombinant human interferon-gamma expression in continuous cultures of E. coli. J Ind Microbiol Biot 36(12):1453–1458. doi:10.1007/s10295-009-0632-x

  28. Wang C, Henkes LM, Doughty LB, He M, Wang D, Meyer-Almes FJ, Cheng YQ (2011) Thailandepsins: bacterial products with potent histone deacetylase inhibitory activities and broad-spectrum antiproliferative activities. J Nat Prod 74(10):2031–2038. doi:10.1021/np200324x

    Google Scholar 

Download references

Acknowledgments

This research was supported by grants from the National Science Foundation of China (NSFC) and 973 Research Programs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi-Qiang Cheng or Xuehong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, B., Hui, J., Cheng, YQ. et al. Extractive fermentation for enhanced production of thailandepsin A from Burkholderia thailandensis E264 using polyaromatic adsorbent resin Diaion HP-20. J Ind Microbiol Biotechnol 39, 767–776 (2012). https://doi.org/10.1007/s10295-011-1073-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-011-1073-x

Keywords

Navigation