Log in

Ectomycorrhizae, arbuscular mycorrhizae, and dark-septate fungi on Salix humboldtiana in two riparian populations from central Argentina

  • Full Paper
  • Published:
Mycoscience

Abstract

Colonization of Salix humboldtiana (Salicaceae) by ectomycorrhizae (ECM), arbuscular mycorrhizae (AM), and dark-septate endophytic (DSE) fungi was studied throughout autumn on two riparian populations in central Argentina. AM and DSE infection on roots ranged from 0% to 17% and from 2% to 20% respectively, whereas ECM colonization was higher, varying between 33% and 99% for both sites. Seven ECM morphotypes were found on S. humboldtiana roots. The nuclear rDNA internal transcriber spacer (ITS) region from the ectomycorrhizal root tips was amplified using ITS-1F and ITS-4 primers. Two of the seven ECM types were identified by searching GenBank blasts: one attributed to the genus Tomentella (Thelephoraceae) and the second most closely matched to Inocybe sp. (Cortinariaceae). The ECM colonization varied among sampling dates and sites, whereas AM and DSE colonization varied only among sampling dates. Diversity values for the ECM morphotype were not significantly different for autumn months or among the two sites. Positive correlations were found between Inocybe sp. and sites and between Inocybe sp., Tomentella sp., morphotypes III, IV, and VI, and sampling dates. This article provides the first documented evidence of co-occurrence of ECM, AM, and DSE in S. humboldtiana.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agerer R (1991) Characterization of ectomycorrhiza. In: Norris JR, Read DJ, Varma AK (eds) Techniques for the study of mycorrhizae. Methods in microbiology, vol 23. Academic Press, London, pp 25–73

    Chapter  Google Scholar 

  • Agerer R (1999) Anatomical characteristics of identified ectomycorrhizas: an attempt towards a natural classification. In: Varma AK, Hock B (eds) Mycorrhiza. Structure, function, molecular biology and biotechnology, 2nd edn. Springer, Berlin, pp 633–682

    Google Scholar 

  • Altschul S, Madden T, Schaffer A, Zhang J, Zhang Z, Miller W, Webb D (1997) Gapped BLAST and PSI BLAST: a new generation in protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Antibus RK, Croxdale JG, Miller OK, Linkins AE (1980) Ectomycorrhizal fungi of Salix rotundifolia III. Resynthesis mycorrhizal complexes and their surface phosphatase activities. Can J Bot 59:2458–2465

    Google Scholar 

  • Baar J (1995) Ectomycorrhizal fungi of Scots pine as affected by litter and humus. PhD thesis, Wageningen University, Wageningen, the Netherlands

    Google Scholar 

  • Baum C, Makeschin F (2000) Effects of nitrogen and phosphorus fertilization on mycorrhizal formation of two poplar clones (Populus trichocapa and P. tremula x tremuloides). J Plant Nutr Soil Sci 163:491–497

    Article  CAS  Google Scholar 

  • Baum C, Weih M, Verwijst T, Makeschin F (2002) The effects of nitrogen fertilization on mycorrhizal formation and soil properties on mycorrhizal formation of Salix viminalis. For Ecol Manag 160:35–43

    Article  Google Scholar 

  • Becerra A, Zak MR, Horton T, Micolini J (2005a) Ectomycorrhizal and arbuscular mycorrhizal colonization of Alnus acuminata from Calilegua National Park (Argentina). Mycorrhiza 15:525–531

    Article  PubMed  Google Scholar 

  • Becerra A, Pritsch K, Arrigo N, Palma M, Bartoloni N (2005b) Ectomycorrhizal colonization of Alnus acuminata Kunth in northwestern Argentina in relation to season and soil parameters. Ann For Sci 62:325–332

    Article  Google Scholar 

  • Cázares E (1992) Mycorrhizal fungi and their relationship to plant succession in subalpine habitats. PhD thesis, Oregon State University, Corvallis

    Google Scholar 

  • Cázares E, Trappe JM, Jumpponen A (2005) Mycorrhiza-plant colonization patterns on a subalpine glacier forefront: a model system of primary succession. Mycorrhiza 15:405–416

    Article  PubMed  Google Scholar 

  • Dahlberg A, Jonsson L, Nylund JE (1997) Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Can J Bot 75:1323–1335

    Article  Google Scholar 

  • Dhillion SS (1994) Ectomycorrhizae, arbuscular mycorrhizae, and Rhizoctonia sp. of alpine and boreal Salix spp. in Norway. Arct Alp Res 26:304–307

    Article  Google Scholar 

  • Di Rienzo JC, Robledo W, Casanoves F, Balzarini MG, González L, Guzmán A, Tablada E (2002) Infostat, versión beta. Estadística y Biometría, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Córdoba, Argentina

    Google Scholar 

  • Dimitri MJ, Leorardis RFJ, Biloni JS (1998) El nuevo libro del Árbol. Tomo II. Especies forestales de la Argentina oriental, 3rd edn. El Ateneo, Buenos Aires

  • Fernando AA, Currah RS (1996) A comparative study of the effects of the root endophytes Leptodontidium orchidicola and Phialocephala fortinii (Fungi Imperfecti) on the growth of some subalpine plants in culture. Can J Bot 74:1071–1078

    Article  Google Scholar 

  • Fuchs B, Haselwandter K (2004) Red list plants: colonization by arbuscular mycorrhizal fungi and dark septate endophytes. Mycorrhiza 14:277–281

    Article  PubMed  CAS  Google Scholar 

  • Gardes M, Bruns T (1993) ITS primer with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  PubMed  CAS  Google Scholar 

  • Gardes M, Bruns T (1996) ITS-RFLP matching for identification of fungi. Methods Mol Biol 50:177–186

    PubMed  CAS  Google Scholar 

  • Gardes M, Dahlberg A (1996) Mycorrhizal diversity in artic and alpine tundra: an open question. New Phytol 133:147–157

    Article  Google Scholar 

  • Gehring CA, Whitham TG (1994) Comparisons of ectomycorrhizae on pinyon pines (Pinus edulis; Pinaceae) across extremes of soil type and herbivory. Am J Bot 81:1509–1516

    Article  Google Scholar 

  • Godbout C, Fortin JA (1983) Morphological features of synthesized ectomycorrhizae of Alnus crispa and Alnus rugosa. New Phytol 94:249–262

    Article  Google Scholar 

  • Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular arbuscular mycorrhizal fungi. Mycol Res 95:1160–1162

    Article  Google Scholar 

  • Graf F (1994) Ecology and sociology of macromycetes in snow-beds with Salix herbaceae L. in the alpine Valley of Radönt (Grisons, Switzerland). Diss Bot 235:1–242

    Google Scholar 

  • Graf F, Brunner I (1996) Natural and synthesized ectomycorrhizas of the alpine dwarf willow Salix herbacea. Mycorrhiza 6:227–235

    Article  Google Scholar 

  • Harley JL, Harley EL (1987) A checklist of mycorrhiza in the British flora. New Phytol 105(suppl):1–102

    Article  Google Scholar 

  • Harvey AE, Jurgensen MF, Larsen MJ (1978) Seasonal distribution of ectomycorrhizae in a mature Douglas-fir/larch forest soil in western Montana. For Sci 24:203–208

    Google Scholar 

  • Hashimoto Y, Higuchi R (2003) Ectomycorrhizal and arbuscular mycorrhizal colonization of two species of floodplain willows. Mycoscience 44:339–343

    Article  Google Scholar 

  • Helm DJ, Allen EB, Trappe JM (1996) Mycorrhizal chronosequence near Exit Glacier, Alaska. Can J Bot 74:1496–1506

    Article  Google Scholar 

  • Helm DJ, Allen EB, Trappe JM (1999) Plant growth and ectomycorrhiza formation by transplants on deglaciated land near Exit Glacier, Alaska. Mycorrhiza 8:297–304

    Article  Google Scholar 

  • Herrera Medina MJ, Gagnon H, Piché Y, Ocampo JA, García Garrido JM, Vierheilig H (2003) Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci 164:993–998

    Article  CAS  Google Scholar 

  • Holmgren PK, Holmgren NH, Barnet LC (1990) Index herbariorum. Part I. The herbaria of the world, 8th edn. Regnum Veg 120:1–693

    Google Scholar 

  • Jones MD, Durall DM, Tinker PB (1990) Phosphorus relationships and productions of balsam poplars, aspen and willows on former arable land in the Federal Republic of Germany. III. Soil ecological effects. For Ecol Manag 121:85–99

    Google Scholar 

  • Jones M, Durall DM, Tinker PB (1998) A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytol 140:125–134

    Article  Google Scholar 

  • Jonsson L, Dahlberg A, Nilsson MC, Zackrisson O, Karén O (1999) Ectomycorrhizal fungal communities in late-succession at Swedish boreal forest, and their composition following wildfire. Mol Ecol 8:205–215

    Article  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes—are they mycorrhizal. Mycorrhiza 11:207–211

    Article  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark-septate root endophytes: a review with special reference to facultative biotrophic symbiosis. New Phytol 140:295–310

    Article  Google Scholar 

  • Jumpponen A, Trappe JM, Cázares E (1999) Ectomycorrhizal fungi in Lyman Lake Basin: a comparison between primary and secondary successional sites. Mycologia 91:575–582

    Article  Google Scholar 

  • Jumpponen A, Trappe JM, Cázares E (2002) Occurrence of ectomycorrhizal fungi on the forefront of retreating Lyman Glacier (Washington, USA) in relation to time since deglaciation. Mycorrhiza 12:43–49

    Article  PubMed  Google Scholar 

  • Kahn A (1993) Occurrence and importance of mycorrhizae in aquatic trees of New South Wales, Australia. Mycorrhiza 3:31–38

    Article  Google Scholar 

  • Khasa PD, Chakravarty P, Robertson A, Thomas BR, Dancik BP (2002) The mycorrhizal status of selected poplar clones introduced in Alberta. Biomed Bioeng 22:99–104

    Google Scholar 

  • Lapeyrie FF, Chilvers GA (1985) An endomycorrhiza-ectomycorrhiza succession associated with enhanced growth of Eucalyptus domosa seedlings planted in a calcareous soil. New Phytol 100:93–104

    Article  Google Scholar 

  • Largent DL (1986) How to identify mushrooms to genus. I: Macroscopic features. Mad River Press, Eureka, CA

    Google Scholar 

  • Largent DL, Johnson D, Watling R (1986) How to identify mushrooms to genus. III: Microscopic features. Mad River Press, Eureka, CA

    Google Scholar 

  • Lodge DJ (1989) The influence of soil moisture and flooding on formation of VA-endo- and ectomycorrhizae in Populus and Salix. Plant Soil 117:243–253

    Article  Google Scholar 

  • Luti R, Bertrán de Solís M, Galera F, Ferreira N, Nores M, Herrera M, Barrera JC (1979) Vegetación. In: Vázquez J, Miatello R, Roqué M (ed) Geografía Física de la Provincia de Córdoba. Bold, Buenos Aires, pp 1–464

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189

    Article  Google Scholar 

  • Marshall PE, Pattullo N (1981) Mycorrhizal occurrence in willows in a northern freshwater wetland. Plant Soil 59:525–532

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild DL, Swan GA (1990) A new method which gives and objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Molina R, Myrold D, Li CY (1994) Root symbiosis of red alder: technological opportunities for enhanced regeneration and soil improvement. In: Hibbs DE, DeBell DS, Tarrant RF (eds) The biology and management of red alder. Oregon State University Press, Corvallis, pp 23–46

    Google Scholar 

  • Moreno G, García Manjón JL, Zugaza A (1986) La guía INCAFO de los hongos de la Península Ibérica, 2 vols. INCAFO, Madrid

    Google Scholar 

  • Nara K, Nakaya H, Hogetsu T (2003) Ectomycorrhizal sporocarp succession and production during early primary succession on Mount Fuji. New Phytol 158:193–206

    Google Scholar 

  • Nelson DW, Sommers LE (1982) Total carbon, organic carbon, and organic matter. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis, part 2. American Society of Agronomy, Madison, WI, pp 639–577

    Google Scholar 

  • O’Dell T, Massicotte HB, Trappe JM (1993) Root colonization of Lupinus latifolius Agradh. and Pinus contorta Dougl. by Phialocephala fortinii Wang & Wilcox. New Phytol 124:93–100

    Article  Google Scholar 

  • Püttsepp U, Rosling A, Taylor AFS (2004) Ectomycorrhizal fungal communities associated with Salix viminalis L. and S. dasyclados Wimm. clones in a short-rotation forestry plantation. For Ecol Manag 196:413–424

    Article  Google Scholar 

  • Ragonese A (1987) Familia Salicaceae. Flora Ilustrada de Entre Ríos III. Colección Científica del INTA. Tomo VI, Buenos Aires, pp 6–14

  • Read DJ (1989) Mycorrhizas and nutrient cycling in sand dune ecosystems. Proc R Soc Edinb Sect B (Biol Sci) 96:89–110

    Google Scholar 

  • Read DJ, Haselwandter K (1981) Observations on the mycorrhizal status of some alpine plant communities. New Phytol 88:341–352

    Article  Google Scholar 

  • Roberston A (1984) Willow plantations in agroforestry. Span 27:32–34

    Google Scholar 

  • Sasaki A, Fujiyoshi M, Shidara S, Nakatsubo T (2001) Effects of nutrients and arbuscular mycorrhizal colonization on the growth of Salix gracilistyla seedlings in a nutrient-poor fluvial bar. Ecol Res 16:165–172

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of diversity. Nature (Lond) 163:688

    Article  Google Scholar 

  • Singer R (1986) The Agaricales in modern taxonomy. Koeltz, Koenigstein

    Google Scholar 

  • Swaty RL, Gehring CA, Van Ert M, Theimer TC, Keim P, Whitman TG (1998) Temporal variation in temperature and rainfall differentially affects ectomycorrhizal colonization at two contrasting sites. New Phytol 139:733–739

    Article  Google Scholar 

  • Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8:1837–1850

    Article  PubMed  CAS  Google Scholar 

  • Trowbridge J, Jumpponen A (2004) Fungal colonization of shrub willow roots at the forefront of a receding glacier. Mycorrhiza 14:283–293

    Article  PubMed  Google Scholar 

  • van der Heijden EW (2001) Differential benefits of arbuscular mycorrhizal and ectomycorrhizal infection of Salix repens. Mycorrhiza 10:185–193

    Article  Google Scholar 

  • van der Heijden EW, Kuyper TW (2003) Ecological strategies of ectomycorrhizal fungi of Salix repens: root manipulation versus root replacement. Oikos 103:668–680

    Article  Google Scholar 

  • van der Heijden EW, Vosatka M (1999) Mycorrhizal associations of Salix repens L. communities in succession of dune ecosystems. II. Mycorrhizal dynamics and interactions of ectomycorrhizal and arbuscular mycorrhizal fungi. Can J Bot 77:1833–1841

    Article  Google Scholar 

  • van der Heijden EW, Vries FW, Kuyper TW (1999) Mycorrhizal associations of Salix repens L. communities in succession of dune ecosystems I. Above-ground and below-ground views of ectomycorrhizal fungi in relation to soil chemistry. Can J Bot 77:1821–1832

    Article  Google Scholar 

  • Visser S, Maynard D, Danielson RM (1998) Response of ecto- and arbuscular mycorrhizal fungi to clear-cutting and the application of chipped aspen wood in a mixed wood site in Alberta, Canada. App Soil Ecol 7:257–269

    Article  Google Scholar 

  • Vogt KA, Bloomfield J, Ammirati JF, Ammirati SR (1992) Sporocarp production by basidiomycetes, with emphasis on forest ecosystems. In: Carroll GC, Wicklow DT (eds) The fungal community: its organization and role in the ecosystem. Dekker, New York, pp 563–581

    Google Scholar 

  • Walker C, McNabb HS (1984) Mycorrhizal symbionts associated with hybrid poplars from Iowa, USA. Eur J Pathol 14:282–296

    Article  Google Scholar 

  • White T, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand D, Sninsky J, White T (eds) PCR protocols: guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

  • Wright JE, Albertó E (2002) Guía de los Hongos de la Región Pampeana. I. Hongos con laminillas. Edición L.O.L.A., Buenos Aires

    Google Scholar 

  • Wright JE, Deschamps JR, Rovetta GS (1973) Basidiomicetos xilófilos de la región mesopotámica. I. Políporos trametoides. Revista de Investigaciones Agropecuarias, INTA Serie 5 10:117–179

    Google Scholar 

  • Yu T, Nassuth A, Peterson RL (2001) Characterization of the interaction between the dark septate fungus Phialocephala fortinii and Asparagus officinalis roots. Can J Microbiol 47:741–753

    Article  PubMed  CAS  Google Scholar 

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandra G. Becerra.

About this article

Cite this article

Becerra, A.G., Nouhra, E.R., Silva, M.P. et al. Ectomycorrhizae, arbuscular mycorrhizae, and dark-septate fungi on Salix humboldtiana in two riparian populations from central Argentina. Mycoscience 50, 343–352 (2009). https://doi.org/10.1007/s10267-009-0490-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10267-009-0490-4

Key words

Navigation